7 research outputs found

    Principles of meiotic chromosome assembly revealed in S. cerevisiae

    Get PDF
    During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process

    Physical Links: Defining and detecting inter-chain entanglement

    Get PDF
    Fluctuating filaments, from densely-packed biopolymers to defect lines in structured fluids, are prone to become interlaced and form intricate architectures. Understanding the ensuing mechanical and relaxation properties depends critically on being able to capture such entanglement in quantitative terms. So far, this has been an elusive challenge. Here we introduce the first general characterization of non-ephemeral forms of entanglement in linear curves by introducing novel descriptors that extend topological measures of linking from close to open curves. We thus establish the concept of physical links. This general method is applied to diverse contexts: equilibrated ring polymers, mechanically-stretched links and concentrated solutions of linear chains. The abundance, complexity and space distribution of their physical links gives access to a whole new layer of understanding of such systems and open new perspectives for others, such as reconnection events and topological simplification in dissipative fields and defect lines

    Catenane’s quantification

    No full text
    17 p.-2 fig. This is a post-peer-review, pre-copyedit version of an article published in Methods in Molecular Biology. The final authenticated version is available online at https://doi.org/10.1007/978-1-4939-7459-7_5Two-dimensional agarose gel electrophoresis is the method of choice to identify and quantify all the topological forms DNA molecules can adopt in vivo. Here we describe the materials and protocols needed to analyze catenanes, the natural outcome of DNA replication, in Saccharomyces cerevisiae. We describe the formation of pre-catenanes during replication and how inhibition of topoisomerase 2 leads to the accumulation of intertwined sister duplexes. This knowledge is essential to determine how replication forks blockage or pausing affects the dynamic of DNA topology during replication.This work was supported by grant BFU2014-56835 from the Spanish Ministerio de EconomĂ­a y Competitividad to JBSPeer reviewe

    Roles of eukaryotic topoisomerases in transcription, replication and genomic stability

    No full text
    corecore