1,636 research outputs found

    Effects of Heat-Producing Elements on the Stability of Deep Mantle Thermochemical Piles

    Get PDF
    ©2020. American Geophysical Union. All Rights Reserved. Geochemical observations of ocean island and mid-ocean ridge basalts suggest that abundances of heat-producing elements (HPEs: U, Th, and K) vary within the mantle. Combined with bulk silicate Earth models and constraints on the Earth's heat budget, these observations suggest the presence of a more enriched (potentially deep and undepleted) reservoir in the mantle. Such a reservoir may be related to seismically observed deep mantle structures known as large low shear velocity provinces (LLSVPs). LLSVPs might represent thermochemical piles of an intrinsically denser composition, and many studies have shown such piles to remain stable over hundreds of Myr or longer. However, few studies have examined if thermochemical piles can remain stable if they are enriched in HPEs, a necessary condition for them to constitute an enriched HPE reservoir. We conduct a suite of mantle convection simulations to examine the effect of HPE enrichment up to 25× the ambient mantle on pile stability. Model results are evaluated against present-day pile morphology and tested for resulting seismic signatures using self-consistent potential pile compositions. We find that stable piles can form from an initial basal layer of dense material even if the layer is enriched in HPEs, depending on the density of the layer and degree of HPE enrichment, with denser basal layers requiring increased HPE enrichment to form pile-like morphology instead of a stable layer. Thermochemical piles or LLSVPs may therefore constitute an enriched reservoir in the deep mantle

    Intrinsic gain modulation and adaptive neural coding

    Get PDF
    In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate vs current (f-I) curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio

    The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. Methods/Principal Findings: HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DLCO) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). Conclusions/Significance: DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Region-Specific Microstructure in the Neonatal Ventricles of a Porcine Model

    Get PDF
    © 2018, Biomedical Engineering Society. The neonate transitions from placenta-derived oxygen, to supply from the pulmonary system, moments after birth. This requires a series of structural developments to divert more blood through the right heart and onto the lungs, with the tissue quickly remodelling to the changing ventricular workload. In some cases, however, the heart structure does not fully develop causing poor circulation and inefficient oxygenation, which is associated with an increase in mortality and morbidity. This study focuses on developing an enhanced knowledge of the 1-day old heart, quantifying the region-specific microstructural parameters of the tissue. This will enable more accurate mathematical and computational simulations of the young heart. Hearts were dissected from 12, 1-day-old deceased Yorkshire piglets (mass: 2.1–2.4kg, length: 0.38–0.51m), acquired from a breeding farm. Evans blue dye was used to label the heart equator and to demarcate the left and right ventricle free walls. Two hearts were used for three-dimensional diffusion-tensor magnetic resonance imaging, to quantify the fractional anisotropy (FA). The remaining hearts were used for two-photon excited fluorescence and second-harmonic generation microscopy, to quantify the cardiomyocyte and collagen fibril structures within the anterior and posterior aspects of the right and left ventricles. FA varied significantly across both ventricles, with the greatest in the equatorial region, followed by the base and apex. The FA in each right ventricular region was statistically greater than that in the left. Cardiomyocyte and collagen fibre rotation was greatest in the anterior wall of both ventricles, with less dispersion when compared to the posterior walls. In defining these key parameters, this study provides a valuable insight into the 1-day-old heart that will provide a valuable platform for further investigation the normal and abnormal heart using mathematical and computational models

    Maintaining RNA integrity in a homogeneous population of mammary epithelial cells isolated by Laser Capture Microdissection

    Get PDF
    Background: Laser-capture microdissection (LCM) that enables the isolation of specific cell populations from complex tissues under morphological control is increasingly used for subsequent gene expression studies in cell biology by methods such as real-time quantitative PCR (qPCR), microarrays and most recently by RNA-sequencing. Challenges are i) to select precisely and efficiently cells of interest and ii) to maintain RNA integrity. The mammary gland which is a complex and heterogeneous tissue, consists of multiple cell types, changing in relative proportion during its development and thus hampering gene expression profiling comparison on whole tissue between physiological stages. During lactation, mammary epithelial cells (MEC) are predominant. However several other cell types, including myoepithelial (MMC) and immune cells are present, making it difficult to precisely determine the specificity of gene expression to the cell type of origin. In this work, an optimized reliable procedure for producing RNA from alveolar epithelial cells isolated from frozen histological sections of lactating goat, sheep and cow mammary glands using an infrared-laser based Arcturus Veritas LCM (Applied Biosystems®) system has been developed. The following steps of the microdissection workflow: cryosectioning, staining, dehydration and harvesting of microdissected cells have been carefully considered and designed to ensure cell capture efficiency without compromising RNA integrity.[br/] Results: The best results were obtained when staining 8 μm-thick sections with Cresyl violet® (Ambion, Applied Biosystems®) and capturing microdissected cells during less than 2 hours before RNA extraction. In addition, particular attention was paid to animal preparation before biopsies or slaughtering (milking) and freezing of tissue blocks which were embedded in a cryoprotective compound before being immersed in isopentane. The amount of RNA thus obtained from ca.150 to 250 acini (300,000 to 600,000 μm2) ranges between 5 to 10 ng. RNA integrity number (RIN) was ca. 8.0 and selectivity of this LCM protocol was demonstrated through qPCR analyses for several alveolar cell specific genes, including LALBA (α-lactalbumin) and CSN1S2 (αs2-casein), as well as Krt14 (cytokeratin 14), CD3e and CD68 which are specific markers of MMC, lymphocytes and macrophages, respectively.[br/] Conclusions: RNAs isolated from MEC in this manner were of very good quality for subsequent linear amplification, thus making it possible to establish a referential gene expression profile of the healthy MEC, a useful platform for tumor biomarker discovery

    A splicing variant of TERT identified by GWAS interacts with menopausal estrogen therapy in risk of ovarian cancer

    Get PDF
    Menopausal estrogen-alone therapy (ET) is a well-established risk factor for serous and endometrioid ovarian cancer. Genetics also plays a role in ovarian cancer, which is partly attributable to 18 confirmed ovarian cancer susceptibility loci identified by genome-wide association studies. The interplay among these loci, ET use and ovarian cancer risk has yet to be evaluated. We analyzed data from 1,414 serous cases, 337 endometrioid cases and 4,051 controls across 10 case-control studies participating in the Ovarian Cancer Association Consortium (OCAC). Conditional logistic regression was used to determine the association between the confirmed susceptibility variants and risk of serous and endometrioid ovarian cancer among ET users and non-users separately and to test for statistical interaction. A splicing variant in TERT, rs10069690, showed a statistically significant interaction with ET use for risk of serous ovarian cancer (pint  = 0.013). ET users carrying the T allele had a 51% increased risk of disease (OR = 1.51, 95% CI 1.19-1.91), which was stronger for long-term ET users of 10+ years (OR = 1.85, 95% CI 1.28-2.66, pint  = 0.034). Non-users showed essentially no association (OR = 1.08, 95% CI 0.96-1.21). Two additional genomic regions harboring rs7207826 (C allele) and rs56318008 (T allele) also had significant interactions with ET use for the endometrioid histotype (pint  = 0.021 and pint  = 0.037, respectively). Hence, three confirmed susceptibility variants were identified whose associations with ovarian cancer risk are modified by ET exposure; follow-up is warranted given that these interactions are not adjusted for multiple comparisons. These findings, if validated, may elucidate the mechanism of action of these loci
    corecore