3,551 research outputs found
What is a normal blood glucose?
Glucose is the key metabolic substrate for tissue energy production. In the perinatal period the mother supplies glucose to the fetus and for most of the gestational period the normal lower limit of fetal glucose concentration is around 3 mmol/L. Just after birth, for the first few hours of life in a normal term neonate appropriate for gestational age, blood glucose levels can range between 1.4 mmol/L and 6.2 mmol/L but by about 72 h of age fasting blood glucose levels reach normal infant, child and adult values (3.5-5.5 mmol/L). Normal blood glucose levels are maintained within this narrow range by factors which control glucose production and glucose utilisation. The key hormones which regulate glucose homoeostasis include insulin, glucagon, epinephrine, norepinephrine, cortisol and growth hormone. Pathological states that affect either glucose production or utilisation will lead to hypoglycaemia. Although hypoglycaemia is a common biochemical finding in children (especially in the newborn) it is not possible to define by a single (or a range of) blood glucose value/s. It can be defined as the concentration of glucose in the blood or plasma at which the individual demonstrates a unique response to the abnormal milieu caused by the inadequate delivery of glucose to a target organ (eg, the brain). Hypoglycaemia should therefore be considered as a continuum and the blood glucose level should be interpreted within the clinical scenario and with respect to the counter-regulatory hormonal responses and intermediate metabolites
A critical evaluation of automatic atom mapping algorithms and tools
The identification of the atoms which change their position in chemical reactions is an important knowledge within the field of Metabolic Engineering. This can lead to new advances at different levels from the reconstruction of metabolic networks to the classification of chemical reactions, through the identification of the atomic changes inside a reaction. The Atom Mapping approach was initially developed in the 1960s, but recently suffered important advances, being used in diverse biological and biotechnological studies. The main methodologies used for atom mapping are the Maximum Common Substructure and the Linear Optimization methods, which both require computational know-how and powerful resources to run the underlying tools.
In this work, we assessed a number of previously implemented atom mapping frameworks, and built a framework able of managing the different data inputs and outputs, as well as the mapping process provided by each of these third-party tools. We evaluated the admissibility of the calculated atom maps from different algorithms, also assessing if with different approaches we were capable of returning equivalent atom maps for the same chemical reaction.ERDF -European Regional Development Fund(UID/BIO/04469/2013)info:eu-repo/semantics/publishedVersio
Activity of the DNA minor groove cross-linking agent SG2000 (SJG-136) against canine tumours
BACKGROUND: Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent. Based on its in vitro potency, the spectrum of in vivo and clinical activity against human tumours, and its tolerability in human patients, SG2000 has potential as a novel therapeutic against spontaneously occurring canine malignancies. RESULTS: In vitro cytotoxicity was assessed using SRB and MTT assays, and in vivo activity was assessed using canine tumour xenografts. DNA interstrand cross-linking (ICL) was determined using a modification of the single cell gel electrophoresis (comet) assay. Effects on cell cycle distribution were assessed by flow cytometry and measurement of γ-H2AX by immunofluorescence and immunohistochemistry. SG2000 had a multi-log differential cytotoxic profile against a panel of 12 canine tumour cell lines representing a range of common tumour types in dogs. In the CMeC-1 melanoma cell line, DNA ICLs increased linearly with dose following a 1 h treatment. Peak ICL was achieved within 1 h and no removal was observed over 48 h. A relationship between DNA ICL formation and cytotoxicity was observed across cell lines. The formation of γ-H2AX foci was slow, becoming evident after 4 h and reaching a peak at 24 h. SG2000 exhibited significant anti-tumour activity against two canine melanoma tumour models in vivo. Anti-tumour activity was observed at 0.15 and 0.3 mg/kg given i.v. either once, or weekly x 3. Dose-dependent DNA ICL was observed in tumours (and to a lower level in peripheral blood mononuclear cells) at 2 h and persisted at 24 h. ICL increased following the second and third doses in a repeated dose schedule. At 24 h, dose dependent γ-H2AX foci were more numerous than at 2 h, and greater in tumours than in peripheral blood mononuclear cells. SG2000-induced H2AX phosphorylation measured by immunohistochemistry showed good correspondence, but less sensitivity, than measurement of foci. CONCLUSIONS: SG2000 displayed potent activity in vitro against canine cancer cell lines as a result of the formation and persistence of DNA ICLs. SG2000 also had significant in vivo antitumour activity against canine melanoma xenografts, and the comet and γ-H2AX foci methods were relevant pharmacodynamic assays. The clinical testing of SG2000 against spontaneous canine cancer is warranted. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0534-2) contains supplementary material, which is available to authorized users
Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53
Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets.
Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region.
Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes
Recommended from our members
Rigorous analysis of numerical methods: a comparative study
For any photonic device simulation, the accuracy of the numerical solution not only depends on the methods being used but also on the discretization parameters used in that numerical method. In this work, Finite Element Method and Finite Difference Time Domain Method based on Maxwell’s equations were used to simulate optical waveguides and directional couplers. As the solution accuracy may also depend on the index contrast used in such photonic devices, the characteristics of low-index contrast Germanium doped Silica and high-index contrast Silicon Nanowire Waveguides were analyzed, evaluated and benchmarked. Numerical results to benchmark Directional Couplers are also reported in this paper
Serotonin and corticosterone rhythms in mice exposed to cigarette smoke and in patients with COPD:implication for COPD-associated neuropathogenesis
The circadian timing system controls daily rhythms of physiology and behavior, and disruption of clock function can trigger stressful life events. Daily exposure to cigarette smoke (CS) can lead to alteration in diverse biological and physiological processes. Smoking is associated with mood disorders, including depression and anxiety. Patients with chronic obstructive pulmonary disease (COPD) have abnormal circadian rhythms, reflected by daily changes in respiratory symptoms and lung function. Corticosterone (CORT) is an adrenal steroid that plays a considerable role in stress and anti-inflammatory responses. Serotonin (5-hydroxytryptamine; 5HT) is a neurohormone, which plays a role in sleep/wake regulation and affective disorders. Secretion of stress hormones (CORT and 5HT) is under the control of the circadian clock in the suprachiasmatic nucleus. Since smoking is a contributing factor in the development of COPD, we hypothesize that CS can affect circadian rhythms of CORT and 5HT secretion leading to sleep and mood disorders in smokers and patients with COPD. We measured the daily rhythms of plasma CORT and 5HT in mice following acute (3 d), sub-chronic (10 d) or chronic (6 mo) CS exposure and in plasma from non-smokers, smokers and patients with COPD. Acute and chronic CS exposure affected both the timing (peak phase) and amplitude of the daily rhythm of plasma CORT and 5HT in mice. Acute CS appeared to have subtle time-dependent effects on CORT levels but more pronounced effects on 5HT. As compared with CORT, plasma 5HT was slightly elevated in smokers but was reduced in patients with COPD. Thus, the effects of CS on plasma 5HT were consistent between mice and patients with COPD. Together, these data reveal a significant impact of CS exposure on rhythms of stress hormone secretion and subsequent detrimental effects on cognitive function, depression-like behavior, mood/anxiety and sleep quality in smokers and patients with COPD
The fiduciary duties of agents / Nor Sa' Adah Abd. Rahman
Sorretirres a person may not be able to act for himself. He may suddenly fall ill and be unable to walk, in which case he may enlist the help of another to my medicine for him. A houseowner who wishes to sell his home may require the help of a broker to sell his house for him. In such cases the person who acts for another is called an 'agent' and the person for whom or on whose behalf he acts is called the 'principal'. Agency therefore is the relationship which subsists between the principal and the agent who has been authorised to act for him or represent him in dealing with others. The relationship of principal and agent is a very conunon one in the modern day msiness world. The word Agency in a general way signifies the relationship that arises when one party uses another party to accomplish some purpose. There are three parties in an agency relationship, that is the party who authorizes another to do sorre business, the authorized party and the party with whom the msiness is transacted. The role and function of an agent is primarily to bring his principal and third party are brought into a contractual relationship he drops out. The agent does not become a party to the final arrangement. As in the case of Plantation Agency Sdn. Bhd. V Hi. Ari'ffin2 the court held that an agent is not personally liable in contract made by his principa
EC-BLAST: a tool to automatically search and compare enzyme reactions.
We present EC-BLAST (http://www.ebi.ac.uk/thornton-srv/software/rbl/), an algorithm and Web tool for quantitative similarity searches between enzyme reactions at three levels: bond change, reaction center and reaction structure similarity. It uses bond changes and reaction patterns for all known biochemical reactions derived from atom-atom mapping across each reaction. EC-BLAST has the potential to improve enzyme classification, identify previously uncharacterized or new biochemical transformations, improve the assignment of enzyme function to sequences, and assist in enzyme engineering
Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh
Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the ‘Wildlife Stakeholder Acceptance Capacity’ concept, to explore villagers’ tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers’ beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide
Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile
Super worm meal (SWM) was evaluated to investigate the effect of partial or total replacement of fish meal (FM) in diets for tilapia juvenile, Oreochromis niloticus. Triplicate groups of fish with average initial body weight (5.57 ± 0.15 g) were fed each with 5 isonitrogeneous (32% crude protein) diets formulated to include 0, 25, 50, 75 and 100% (diets 1 – 5, respectively) of FM substituted with SWM. After eight weeks of feeding trials, fish fed with diet 2 and 3 revealed the highest values for live weight gain, specific growth rates, better feed conversion ratio as well as protein efficiency ratio compared to the others. Survival range was 100% in all the treatments. However, fish fed to diet 5 exhibited lower growth than those fed others diets. There were no significant differences (P > 0.05) in the moisture, protein, lipid and ash content in the whole body composition. These results clearly indicate that up to 25% of FM protein in fish diet can be replaced by SWM without any adverse effect on feed utilization and body composition. A decrease in weight gain and other growth associated parameters was observed with higher replacement.Key words: Feed utilization, growth performance, insect based diet, Oreochromis niloticus, super worm meal, Zophobas morio
- …
