730 research outputs found

    Apical Hypertrophic Cardiomyopathy: The Variant Less Known

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is an umbrella term for a heterogeneous heart muscle disease that was historically (and still is) defined by the detection of left ventricular (LV) hypertrophy (LVH) in the absence of abnormal cardiac loading conditions. Long after this morphological definition was established, the genetic basis of HCM was discovered, and we now know it is predominantly caused by autosomal dominant mutations in sarcomeric protein genes.1 Several patterns of LVH have been described in HCM: asymmetric septal (here referred to as “classic” HCM), concentric, reverse septal, neutral, and apical (ApHCM),2 as well as other, rarer LVH variants such as isolated lateral LVH and isolated inferoseptal LVH. Distinguishing between morphological HCM subtypes has conferred little in terms of personalized management strategies, with one distinctive exception: ApHCM. Compared with classic HCM, ApHCM is more sporadic, sarcomere mutations are detected less frequently, there is more atrial fibrillation (AF) and sudden cardiac death (SCD) risk factors differ. No authoritative ApHCM‐specific recommendations to guide diagnosis, family screening, and patient risk stratification currently exist. First described in Japan in 1976,2 ApHCM is exemplified by “giant” negative precordial T‐waves on electrocardiography and by “spadelike” configuration of its LV cavity in end diastole.3 This review summarizes the epidemiology, clinical expression, genetics, and prognosis of ApHCM, while also highlighting knowledge gap

    qtl.outbred: Interfacing outbred line cross data with the R/qtl mapping software

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><b>qtl.outbred </b>is an extendible interface in the statistical environment, R, for combining quantitative trait loci (QTL) mapping tools. It is built as an umbrella package that enables outbred genotype probabilities to be calculated and/or imported into the software package R/<b>qtl</b>.</p> <p>Findings</p> <p>Using <b>qtl.outbred</b>, the genotype probabilities from outbred line cross data can be calculated by interfacing with a new and efficient algorithm developed for analyzing arbitrarily large datasets (included in the package) or imported from other sources such as the web-based tool, GridQTL.</p> <p>Conclusion</p> <p><b>qtl.outbred </b>will improve the speed for calculating probabilities and the ability to analyse large future datasets. This package enables the user to analyse outbred line cross data accurately, but with similar effort than inbred line cross data.</p

    Nicotine enhances an auditory Event-Related Potential component which is inversely related to habituation

    Get PDF
    Nicotine is a psychoactive substance that is commonly consumed in the context of music. However, the reason why music and nicotine are coconsumed is uncertain. One possibility is that nicotine affects cognitive processes relevant to aspects of music appreciation in a beneficial way. Here we investigated this possibility using Event-Related Potentials (ERPs). Participants underwent a simple decision-making task (to maintain attentional focus), responses to which were signaled by auditory stimuli. Unlike most previous research looking at the effects of nicotine on auditory processing, we used tones of different pitch, a fundamental element of music. In addition, unlike most other studies, we tested non-smoking subjects to avoid withdrawal-related complications. We found that nicotine (4.0 mg, administered as gum) increased P2 amplitude in the frontal region. Since a decrease in P2 amplitude and latency is related to habituation processes, and an enhanced ability to disengage from irrelevant stimuli, our findings suggest that nicotine may cause a reduction in habituation, resulting in non-smokers being less able to adapt to repeated stimuli. A corollary of that decrease in adaptation may be that nicotine extends the temporal window during which a listener is able and willing to engage with a piece of music

    Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross

    Get PDF
    An F broiler-layer cross was phenotyped for 18 skeletal traits at 6, 7 and 9 weeks of age and genotyped with 120 microsatellite markers. Interval mapping identified 61 suggestive and significant QTL on 16 of the 25 linkage groups for 16 traits. Thirty-six additional QTL were identified when the assumption that QTL were fixed in the grandparent lines was relaxed. QTL with large effects on the lengths of the tarsometatarsus, tibia and femur, and the weights of the tibia and femur were identified on GGA4 between 217 and 249 cM. Six QTL for skeletal traits were identified that did not co-locate with genome wide significant QTL for body weight and two body weight QTL did not coincide with skeletal trait QTL. Significant evidence of imprinting was found in ten of the QTL and QTL x sex interactions were identified for 22 traits. Six alleles from the broiler line for weight- and size-related skeletal QTL were positive. Negative alleles for bone quality traits such as tibial dyschondroplasia, leg bowing and tibia twisting generally originated from the layer line suggesting that the allele inherited from the broiler is more protective than the allele originating from the layer

    A Bayesian approach to detect QTL affecting a simulated binary and quantitative trait

    Get PDF
    Background - We analyzed simulated data from the 14th QTL-MAS workshop using a Bayesian approach implemented in the program iBay. The data contained individuals genotypes for 10,031 SNPs and phenotyped for a quantitative and a binary trait. Results - For the quantitative trait we mapped 8 out of 30 additive QTL, 1 out of 3 imprinted QTL and both epistatic pairs of QTL successfully. For the binary trait we mapped 11 out of 22 additive QTL successfully. Four out of 22 pleiotropic QTL were detected as such. Conclusions - The Bayesian variable selection method showed to be a successful method for genome-wide association. This method was reasonably fast using dense marker map

    Bayesian shrinkage mapping of quantitative trait loci in variance component models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this article, I propose a model-selection-free method to map multiple quantitative trait loci (QTL) in variance component model, which is useful in outbred populations. The new method can estimate the variance of zero-effect QTL infinitely to zero, but nearly unbiased for non-zero-effect QTL. It is analogous to Xu's Bayesian shrinkage estimation method, but his method is based on allelic substitution model, while the new method is based on the variance component models.</p> <p>Results</p> <p>Extensive simulation experiments were conducted to investigate the performance of the proposed method. The results showed that the proposed method was efficient in mapping multiple QTL simultaneously, and moreover it was more competitive than the reversible jump MCMC (RJMCMC) method and may even out-perform it.</p> <p>Conclusions</p> <p>The newly developed Bayesian shrinkage method is very efficient and powerful for mapping multiple QTL in outbred populations.</p

    A fast algorithm for estimating transmission probabilities in QTL detection designs with dense maps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the case of an autosomal locus, four transmission events from the parents to progeny are possible, specified by the grand parental origin of the alleles inherited by this individual. Computing the probabilities of these transmission events is essential to perform QTL detection methods.</p> <p>Results</p> <p>A fast algorithm for the estimation of these probabilities conditional to parental phases has been developed. It is adapted to classical QTL detection designs applied to outbred populations, in particular to designs composed of half and/or full sib families. It assumes the absence of interference.</p> <p>Conclusion</p> <p>The theory is fully developed and an example is given.</p

    Modelling ranging behaviour of female orang-utans: a case study in Tuanan, Central Kalimantan, Indonesia

    Full text link
    Quantification of the spatial needs of individuals and populations is vitally important for management and conservation. Geographic information systems (GIS) have recently become important analytical tools in wildlife biology, improving our ability to understand animal movement patterns, especially when very large data sets are collected. This study aims at combining the field of GIS with primatology to model and analyse space-use patterns of wild orang-utans. Home ranges of female orang-utans in the Tuanan Mawas forest reserve in Central Kalimantan, Indonesia were modelled with kernel density estimation methods. Kernel results were compared with minimum convex polygon estimates, and were found to perform better, because they were less sensitive to sample size and produced more reliable estimates. Furthermore, daily travel paths were calculated from 970 complete follow days. Annual ranges for the resident females were approximately 200 ha and remained stable over several years; total home range size was estimated to be 275 ha. On average, each female shared a third of her home range with each neighbouring female. Orang-utan females in Tuanan built their night nest on average 414 m away from the morning nest, whereas average daily travel path length was 777 m. A significant effect of fruit availability on day path length was found. Sexually active females covered longer distances per day and may also temporarily expand their ranges
    corecore