21 research outputs found

    Characteristics of clinical trials in rare vs. common diseases : A register-based Latvian study

    Get PDF
    Publisher Copyright: © 2018 Logviss et al. This is an open ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and eproduction in any medium, provided the original author and source are credited.Background Conducting clinical studies in small populations may be very challenging; therefore quality of clinical evidence may differ between rare and non-rare disease therapies. Objective This register-based study aims to evaluate the characteristics of clinical trials in rare diseases conducted in Latvia and compare them with clinical trials in more common conditions. Methods The EU Clinical Trials Register (clinicaltrialsregister.eu) was used to identify interventional clinical trials related to rare diseases (n = 51) and to compose a control group of clinical trials in non-rare diseases (n = 102) for further comparison of the trial characteristics. Results We found no significant difference in the use of overall survival as a primary endpoint in clinical trials between rare and non-rare diseases (9.8% vs. 13.7%, respectively). However, clinical trials in rare diseases were less likely to be randomized controlled trials (62.7% vs. 83.3%). Rare and non-rare disease clinical trials varied in masking, with rare disease trials less likely to be double blind (45.1% vs. 63.7%). Active comparators were less frequently used in rare disease trials (36.4% vs. 58.8% of controlled trials). Clinical trials in rare diseases enrolled fewer participants than those in non-rare diseases: In Latvia (mean 18.3 vs. 40.2 subjects, respectively), in the European Economic Area (mean 181.0 vs. 626.9 subjects), and in the whole clinical trial (mean 335.8 vs. 1406.3 subjects). Although, we found no significant difference in trial duration between the groups (mean 38.3 vs. 36.4 months). Conclusions The current study confirms that clinical trials in rare diseases vary from those in non-rare conditions, with notable differences in enrollment, randomization, masking, and the use of active comparators. However, we found no significant difference in trial duration and the use of overall survival as a primary endpoint.publishersversionPeer reviewe

    Reporting bias in medical research - a narrative review

    Get PDF
    Reporting bias represents a major problem in the assessment of health care interventions. Several prominent cases have been described in the literature, for example, in the reporting of trials of antidepressants, Class I anti-arrhythmic drugs, and selective COX-2 inhibitors. The aim of this narrative review is to gain an overview of reporting bias in the medical literature, focussing on publication bias and selective outcome reporting. We explore whether these types of bias have been shown in areas beyond the well-known cases noted above, in order to gain an impression of how widespread the problem is. For this purpose, we screened relevant articles on reporting bias that had previously been obtained by the German Institute for Quality and Efficiency in Health Care in the context of its health technology assessment reports and other research work, together with the reference lists of these articles

    Polycystic kidney disease with hyperinsulinemic hypoglycemia caused by a promoter mutation in PMM2

    Get PDF
    Hyperinsulinemic hypoglycemia (HI) and congenital polycystic kidney disease (PKD) are rare, genetically heterogeneous disorders. The co-occurrence of these disorders (HIPKD) in 17 children from 11 unrelated families suggested an unrecognized genetic disorder. Whole-genome linkage analysis in five informative families identified a single significant locus on chromosome 16p13.2 (logarithm of odds score 6.5). Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, we found in all patients a promoter mutation (c.-167G>T) in the phosphomannomutase 2 gene (PMM2), either homozygous or in trans with PMM2 coding mutations. PMM2 encodes a key enzyme in N-glycosylation. Abnormal glycosylation has been associated with PKD, and we found that deglycosylation in cultured pancreatic β cells altered insulin secretion. Recessive coding mutations in PMM2 cause congenital disorder of glycosylation type 1a (CDG1A), a devastating multisystem disorder with prominent neurologic involvement. Yet our patients did not exhibit the typical clinical or diagnostic features of CDG1A. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2. We propose that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. Our findings extend the spectrum of genetic causes for both HI and PKD and provide insights into gene regulation and PMM2 pleiotropy

    Personalizing health care: feasibility and future implications

    Get PDF
    Considerable variety in how patients respond to treatments, driven by differences in their geno- and/ or phenotypes, calls for a more tailored approach. This is already happening, and will accelerate with developments in personalized medicine. However, its promise has not always translated into improvements in patient care due to the complexities involved. There are also concerns that advice for tests has been reversed, current tests can be costly, there is fragmentation of funding of care, and companies may seek high prices for new targeted drugs. There is a need to integrate current knowledge from a payer’s perspective to provide future guidance. Multiple findings including general considerations; influence of pharmacogenomics on response and toxicity of drug therapies; value of biomarker tests; limitations and costs of tests; and potentially high acquisition costs of new targeted therapies help to give guidance on potential ways forward for all stakeholder groups. Overall, personalized medicine has the potential to revolutionize care. However, current challenges and concerns need to be addressed to enhance its uptake and funding to benefit patients
    corecore