1,907 research outputs found

    Why sports should embrace bilateral asymmetry: a narrative review

    Get PDF
    (1) Background: Asymmetry is ubiquitous in nature and humans have well-established bilateral asymmetries in their structures and functions. However, there are (mostly unsubstantiated) claims that bilateral asymmetries may impair sports performance or increase injury risk. (2) Objective: To critically review the evidence of the occurrence and effects of asymmetry and sports performance. (3) Development: Asymmetry is prevalent across several sports regardless of age, gender, or competitive level, and can be verified even in apparently symmetric actions (e.g., running and rowing). Assessments of bilateral asymmetries are highly task-, metric-, individual-, and sport-specific; fluctuate significantly in time (in magnitude and, more importantly, in direction); and tend to be poorly correlated among themselves, as well as with general performance measures. Assessments of sports-specific performance is mostly lacking. Most studies assessing bilateral asymmetries do not actually assess the occurrence of injuries. While injuries tend to accentuate bilateral asymmetries, there is no evidence that pre-existing asymmetries increase injury risk. While training programs reduce certain bilateral asymmetries, there is no evidence that such reductions result in increased sport-specific performance or reduced injury risk. (4) Conclusions: Bilateral asymmetries are prevalent in sports, do not seem to impair performance, and there is no evidence that suggests that they increase injury risk

    The effect of exercise training interventions in adult kidney transplant recipients: a systematic review and meta-analysis of randomised control trials

    Get PDF
    Background: Kidney transplant recipients (KTRs) are characterised by adverse changes in physical fitness and body composition. Post-transplant management involves being physically active, although evidence for the effect of exercise is limited. Objective: To assess the effects of exercise training interventions in KTRs. Methods: NCBI PubMed (MEDLINE) and CENTRAL (EMBASE, WHO ICTRP) databases were searched up to March 2021 to identify eligible randomized controlled trials (RCTs) that studied exercise training in adult KTRs. Outcomes included exercise capacity, strength, blood pressure, body composition, heart rate, markers of dyslipidaemia and renal function, and health-related quality of life (QoL). Results: Sixteen RCTs, containing 827 KTRs, were included. The median intervention length was 14-weeks with participants exercising between 2–7x/week. Most studies used a mixture of aerobic and resistance exercise. Significant improvements were observed in cardiorespiratory function (VO2peak) (3.21 ml/kg/min, p = 0.003), 6MWT (76.3 meters, p = 0.009), physical function (STS-60, 4.8 repetitions, p = 0.04), and high-density lipoprotein (HDL) (0.13 mg/dL, p = 0.03). A moderate increase in maximum heart rate was seen (p = 0.06). A moderate reduction in creatinine was also observed (0.14 mg/dl, p = 0.05). Isolated studies reported improvements in strength, bone health, lean mass, and QoL. Overall, studies had high risk of bias suggestive of publication bias. Conclusions: Exercise training may confer several benefits in adult KTRs, particularly by increasing cardiorespiratory function and exercise capacity, strength, HDL levels, maximum heart rate, and improving QoL. Additional long-term large sampled RCTs, incorporating complex interventions requiring both exercise and dietary behaviour change, are needed to fully understand the effects of exercise in KTRs

    Nuclear receptors in vascular biology

    Get PDF
    Nuclear receptors sense a wide range of steroids and hormones (estrogens, progesterone, androgens, glucocorticoid, and mineralocorticoid), vitamins (A and D), lipid metabolites, carbohydrates, and xenobiotics. In response to these diverse but critically important mediators, nuclear receptors regulate the homeostatic control of lipids, carbohydrate, cholesterol, and xenobiotic drug metabolism, inflammation, cell differentiation and development, including vascular development. The nuclear receptor family is one of the most important groups of signaling molecules in the body and as such represent some of the most important established and emerging clinical and therapeutic targets. This review will highlight some of the recent trends in nuclear receptor biology related to vascular biology

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators?

    Get PDF
    As well as nutritional rewards, some plants also reward ectothermic pollinators with warmth. Bumble bees have some control over their temperature, but have been shown to forage at warmer flowers when given a choice, suggesting that there is some advantage to them of foraging at warm flowers (such as reducing the energy required to raise their body to flight temperature before leaving the flower). We describe a model that considers how a heat reward affects the foraging behaviour in a thermogenic central-place forager (such as a bumble bee). We show that although the pollinator should spend a longer time on individual flowers if they are warm, the increase in total visit time is likely to be small. The pollinator's net rate of energy gain will be increased by landing on warmer flowers. Therefore, if a plant provides a heat reward, it could reduce the amount of nectar it produces, whilst still providing its pollinator with the same net rate of gain. We suggest how heat rewards may link with plant life history strategies

    OpenEP: A Cross-Platform Electroanatomic Mapping Data Format and Analysis Platform for Electrophysiology Research.

    Get PDF
    BACKGROUND: Electroanatomic mapping systems are used to support electrophysiology research. Data exported from these systems is stored in proprietary formats which are challenging to access and storage-space inefficient. No previous work has made available an open-source platform for parsing and interrogating this data in a standardized format. We therefore sought to develop a standardized, open-source data structure and associated computer code to store electroanatomic mapping data in a space-efficient and easily accessible manner. METHODS: A data structure was defined capturing the available anatomic and electrical data. OpenEP, implemented in MATLAB, was developed to parse and interrogate this data. Functions are provided for analysis of chamber geometry, activation mapping, conduction velocity mapping, voltage mapping, ablation sites, and electrograms as well as visualization and input/output functions. Performance benchmarking for data import and storage was performed. Data import and analysis validation was performed for chamber geometry, activation mapping, voltage mapping and ablation representation. Finally, systematic analysis of electrophysiology literature was performed to determine the suitability of OpenEP for contemporary electrophysiology research. RESULTS: The average time to parse clinical datasets was 400 ± 162 s per patient. OpenEP data was two orders of magnitude smaller than compressed clinical data (OpenEP: 20.5 ± 8.7 Mb, vs clinical: 1.46 ± 0.77 Gb). OpenEP-derived geometry metrics were correlated with the same clinical metrics (Area: R 2 = 0.7726, P < 0.0001; Volume: R 2 = 0.5179, P < 0.0001). Investigating the cause of systematic bias in these correlations revealed OpenEP to outperform the clinical platform in recovering accurate values. Both activation and voltage mapping data created with OpenEP were correlated with clinical values (mean voltage R 2 = 0.8708, P < 0.001; local activation time R 2 = 0.8892, P < 0.0001). OpenEP provides the processing necessary for 87 of 92 qualitatively assessed analysis techniques (95%) and 119 of 136 quantitatively assessed analysis techniques (88%) in a contemporary cohort of mapping studies. CONCLUSIONS: We present the OpenEP framework for evaluating electroanatomic mapping data. OpenEP provides the core functionality necessary to conduct electroanatomic mapping research. We demonstrate that OpenEP is both space-efficient and accurately representative of the original data. We show that OpenEP captures the majority of data required for contemporary electroanatomic mapping-based electrophysiology research and propose a roadmap for future development

    Pattern and Outcome of Chest Injuries at Bugando Medical Centre in Northwestern Tanzania.

    Get PDF
    Chest injuries constitute a continuing challenge to the trauma or general surgeon practicing in developing countries. This study was conducted to outline the etiological spectrum, injury patterns and short term outcome of these injuries in our setting. This was a prospective study involving chest injury patients admitted to Bugando Medical Centre over a six-month period from November 2009 to April 2010 inclusive. A total of 150 chest injury patients were studied. Males outnumbered females by a ratio of 3.8:1. Their ages ranged from 1 to 80 years (mean = 32.17 years). The majority of patients (72.7%) sustained blunt injuries. Road traffic crush was the most common cause of injuries affecting 50.7% of patients. Chest wall wounds, hemothorax and rib fractures were the most common type of injuries accounting for 30.0%, 21.3% and 20.7% respectively. Associated injuries were noted in 56.0% of patients and head/neck (33.3%) and musculoskeletal regions (26.7%) were commonly affected. The majority of patients (55.3%) were treated successfully with non-operative approach. Underwater seal drainage was performed in 39 patients (19.3%). One patient (0.7%) underwent thoracotomy due to hemopericardium. Thirty nine patients (26.0%) had complications of which wound sepsis (14.7%) and complications of long bone fractures (12.0%) were the most common complications. The mean LOS was 13.17 days and mortality rate was 3.3%. Using multivariate logistic regression analysis, associated injuries, the type of injury, trauma scores (ISS, RTS and PTS) were found to be significant predictors of the LOS (P < 0.001), whereas mortality was significantly associated with pre-morbid illness, associated injuries, trauma scores (ISS, RTS and PTS), the need for ICU admission and the presence of complications (P < 0.001). Chest injuries resulting from RTCs remain a major public health problem in this part of Tanzania. Urgent preventive measures targeting at reducing the occurrence of RTCs is necessary to reduce the incidence of chest injuries in this region

    Size and shape constancy in consumer virtual reality

    Get PDF
    With the increase in popularity of consumer virtual reality headsets, for research and other applications, it is important to understand the accuracy of 3D perception in VR. We investigated the perceptual accuracy of near-field virtual distances using a size and shape constancy task, in two commercially available devices. Participants wore either the HTC Vive or the Oculus Rift and adjusted the size of a virtual stimulus to match the geometric qualities (size and depth) of a physical stimulus they were able to refer to haptically. The judgments participants made allowed for an indirect measure of their perception of the egocentric, virtual distance to the stimuli. The data show under-constancy and are consistent with research from carefully calibrated psychophysical techniques. There was no difference in the degree of constancy found in the two headsets. We conclude that consumer virtual reality headsets provide a sufficiently high degree of accuracy in distance perception, to allow them to be used confidently in future experimental vision science, and other research applications in psychology
    corecore