11 research outputs found

    The use of medicinal plants in health care practices by Rohingya refugees in a degraded forest and conservation area of Bangladesh

    Get PDF
    People in developing countries traditionally rely on plants for their primary healthcare. This dependence is relatively higher in forests in remote areas due to the lack of access to modern health facilities and easy availability of the plant products.We carried out an ethno-medicinal survey in Teknaf Game Reserve (TGR), a heavily degraded forest and conservation area in southern Bangladesh, to explore the diversity of plants used by Rohingya refugees for treating various ailments. The study also documented the traditional utilization, collection and perceptions of medicinal plants by the Rohingyas residing on the edges of this conservation area. We collected primary information through direct observation and by interviewing older respondents using a semi-structured questionnaire. A total of 34 plant species in 28 families were frequently used by the Rohingyas to treat 45 ailments, ranging from simple headaches to highly complex eye and heart diseases. For medicinal preparations and treating various ailments, aboveground plant parts were used more than belowground parts. The collection of medicinal plants was mostly from the TGR. © 2009 Taylor & Francis

    Individualized markers optimize class prediction of microarray data

    Get PDF
    BACKGROUND: Identification of molecular markers for the classification of microarray data is a challenging task. Despite the evident dissimilarity in various characteristics of biological samples belonging to the same category, most of the marker – selection and classification methods do not consider this variability. In general, feature selection methods aim at identifying a common set of genes whose combined expression profiles can accurately predict the category of all samples. Here, we argue that this simplified approach is often unable to capture the complexity of a disease phenotype and we propose an alternative method that takes into account the individuality of each patient-sample. RESULTS: Instead of using the same features for the classification of all samples, the proposed technique starts by creating a pool of informative gene-features. For each sample, the method selects a subset of these features whose expression profiles are most likely to accurately predict the sample's category. Different subsets are utilized for different samples and the outcomes are combined in a hierarchical framework for the classification of all samples. Moreover, this approach can innately identify subgroups of samples within a given class which share common feature sets thus highlighting the effect of individuality on gene expression. CONCLUSION: In addition to high classification accuracy, the proposed method offers a more individualized approach for the identification of biological markers, which may help in better understanding the molecular background of a disease and emphasize the need for more flexible medical interventions

    Autism-modifying therapy based on the promotion of a brain enzyme: An introductory case-report

    No full text

    Fundamentals and Applications of Chitosan

    No full text
    International audienceChitosan is a biopolymer obtained from chitin, one of the most abundant and renewable material on Earth. Chitin is a primary component of cell walls in fungi, the exoskeletons of arthropods, such as crustaceans, e.g. crabs, lobsters and shrimps, and insects, the radulae of molluscs, cephalopod beaks, and the scales of fish and lissamphibians. The discovery of chitin in 1811 is attributed to Henri Braconnot while the history of chitosan dates back to 1859 with the work of Charles Rouget. The name of chitosan was, however, introduced in 1894 by Felix Hoppe-Seyler. Because of its particular macromolecular structure, biocompatibility, biode-gradability and other intrinsic functional properties, chitosan has attracted major scientific and industrial interests from the late 1970s. Chitosan and its derivatives have practical applications in food industry, agriculture, pharmacy, medicine, cos-metology, textile and paper industries, and chemistry. In the last two decades, chito-san has also received much attention in numerous other fields such as dentistry, ophthalmology, biomedicine and bio-imaging, hygiene and personal care, veterinary medicine, packaging industry, agrochemistry, aquaculture, functional textiles and cosmetotextiles, catalysis, chromatography, beverage industry, photography, wastewater treatment and sludge dewatering, and biotechnology. Nutraceuticals and cosmeceuticals are actually growing markets, and therapeutic and biomedical products should be the next markets in the development of chitosan. Chitosan is also the N. Morin-Crini (*) · Laboratoire Chrono-environnement, UMR 6249, UFR Sciences et Techniques
    corecore