35 research outputs found

    PCR Targeting Plasmodium Mitochondrial Genome of DNA Extracted from Dried Blood on Filter Paper Compared to Whole Blood.

    Get PDF
    Monitoring mortality and morbidity attributable to malaria is paramount to achieve elimination of malaria. Diagnosis of malaria is challenging and PCR is a reliable method for identifying malaria with high sensitivity. However, blood specimen collection and transport can be challenging and obtaining dried blood spots (DBS) on filter paper by finger-prick may have advantages over collecting whole blood by venepuncture. DBS and whole blood were collected from febrile children admitted at the general paediatric wards at a referral hospital in Dar es Salaam, Tanzania. DNA extracted from whole blood and from DBS was tested with a genus-specific PCR targeting the mitochondrial Plasmodium genome. Positive samples by PCR of DNA from whole blood were tested with species-specific PCR targeting the 18S rRNA locus, or sequencing if species-specific PCR was negative. Rapid diagnostic test (RDT) and thin blood smear microscopy was carried out on all patients where remnant whole blood and a blood slide, respectively, were available. Positivity of PCR was 24.5 (78/319) and 11.2% (52/442) by whole blood and DBS, respectively. All samples positive on DBS were also positive on Plasmodium falciparum species-specific PCR. All RDT positive cases were also positive by DBS PCR. All but three cases with positive blood slides were also positive by DBS. In this study, PCR for malaria mitochondrial DNA extracted from whole blood was more sensitive than from DBS. However, DBS are a practical alternative to whole blood and detected approximately the same number of cases as RDTs and, therefore, remain relevant for research purposes

    Treatment with IL-7 Prevents the Decline of Circulating CD4+ T Cells during the Acute Phase of SIV Infection in Rhesus Macaques

    Get PDF
    Although treatment with interleukin-7 (IL-7) was shown to transiently expand the naïve and memory T-cell pools in patients with chronic HIV-1 infection receiving antiretroviral therapy (ART), it is uncertain whether a full immunologic reconstitution can be achieved. Moreover, the effects of IL-7 have never been evaluated during acute HIV-1 (or SIV) infection, a critical phase of the disease in which the most dramatic depletion of CD4+ T cells is believed to occur. In the present study, recombinant, fully glycosylated simian IL-7 (50 µg/kg, s.c., once weekly for 7 weeks) was administered to 6 rhesus macaques throughout the acute phase of infection with a pathogenic SIV strain (mac251); 6 animals were infected at the same time and served as untreated controls. Treatment with IL-7 did not cause clinically detectable side effects and, despite the absence of concomitant ART, did not induce significant increases in the levels of SIV replication except at the earliest time point tested (day 4 post-infection). Strikingly, animals treated with IL-7 were protected from the dramatic decline of circulating naïve and memory CD4+ T cells that occurred in untreated animals. Treatment with IL-7 induced only transient T-cell proliferation, but it was associated with sustained increase in the expression of the anti-apoptotic protein Bcl-2 on both CD4+ and CD8+ T cells, persistent expansion of all circulating CD8+ T-cell subsets, and development of earlier and stronger SIV Tat-specific T-cell responses. However, the beneficial effects of IL-7 were not sustained after treatment interruption. These data demonstrate that IL-7 administration is effective in protecting the CD4+ T-cell pool during the acute phase of SIV infection in macaques, providing a rationale for the clinical evaluation of this cytokine in patients with acute HIV-1 infection
    corecore