646 research outputs found

    Leveraging D2D Communication to Maximize the Spectral Efficiency of Massive MIMO Systems

    Get PDF
    In this paper, we investigate offloading of UEs in D2D mode for a massive MIMO system, where the base station (BS) is equipped with a large, but finite number of antennas and the total number of UEs is kept fixed. We derive closedform expressions for the bounds of the overall capacity of the system. Our results reveal that there exists an optimal user offload fraction, which maximizes the overall capacity. This fraction is strongly coupled with the network parameters such as the number of antennas at the BS, D2D link distance and the transmit SNR at both the UE and the BS. Given a set of network parameters, careful tuning of the offload fraction can provide up to 5× capacity gains

    Coulomb interactions within Halo Effective Field Theory

    Full text link
    I present preliminary results of effective field theory applied to nuclear cluster systems, where Coulomb interactions play a significant role.Comment: Talk given at the 20th European Conference on Few-Body Problems in Physics, Pisa, Italy, September 10-14, 200

    The deleted in brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src

    Get PDF
    The transmembrane receptor 'ROR2' resembles members of the receptor tyrosine kinase family of signalling receptors in sequence but its' signal transduction mechanisms remain enigmatic. This problem has particular importance because mutations in ROR2 are associated with two human skeletal dysmorphology syndromes, recessive Robinow Syndrome (RS) and dominant acting Brachydactyly type B (BDB). Here we show, using a constitutive dimerisation approach, that ROR2 exhibits dimerisation-induced tyrosine kinase activity and the ROR2 C-terminal domain, which is deleted in BDB, is required for recruitment and activation of the non-receptor tyrosine kinase Src. Native ROR2 phosphorylation is induced by the ligand Wnt5a and is blocked by pharmacological inhibition of Src kinase activity. Eight sites of Src-mediated ROR2 phosphorylation have been identified by mass spectrometry. Activation via tyrosine phosphorylation of ROR2 receptor leads to its internalisation into Rab5 positive endosomes. These findings show that BDB mutant receptors are defective in kinase activation as a result of failure to recruit Src

    Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions

    Get PDF
    Highly active and durable bifunctional oxygen electrocatalysts have been of pivotal importance for renewable energy conversion and storage devices, such as unitized regenerative fuel cells and metal-air batteries. Perovskite-based oxygen electrocatalysts have emerged as promising nonprecious metal bifunctional electrocatalysts, yet their catalytic activity and stability still remain to be improved. We report a high-performance oxygen electrocatalyst based on a triple perovskite, Nd1.5Ba1.5CoFeMnO9-delta (NBCFM), which shows superior activity and durability for oxygen electrode reactions to single and double perovskites. When hybridized with nitrogen-doped reduced graphene oxide (N-rGO), the resulting NBCFM/N-rGO catalyst shows further boosted bifunctional oxygen electrode activity (0.698 V), which surpasses that of Pt/C (0.801 V) and Ir/C (0.769 V) catalysts and which, among the perovskite-based electrocatalysts, is the best activity reported to date. The superior catalytic performances of NBCFM could be correlated to its oxygen defect rich structure, lower charge transfer resistance, and smaller hybridization strength between O 2p and Co 3d orbitals

    Investigation of flexural properties of epoxy composite by utilizing graphene nanofillers and natural hemp fibre reinforcement

    Full text link
    This study aims to determine the optimum reinforcement required to attain the best combination of flexural strength of modified green composites (graphene oxide + hemp fibre reinforced epoxy composites) for potential use in structural applications. An attempt was also made for the combination of graphene and hemp fibres to enhance load-bearing ability. The infusion of hemp and graphene was made by the weight of the base matrix (epoxy composite). Results showed that graphene reinforcement at 0.4 wt.% of matrix showed load-sustaining capacity of 0.76 kN or 760 MPa. In the case of hemp fibre reinforcement at 0.2 wt.% of the matrix, infusion showed enhanced load-bearing ability (0.79 kN or 790 MPa). However, the combination of graphene (0.1 wt.% graphene nanofillers) and hemp (5 wt.% hemp fibre) indicated a load-sustaining ability of 0.425 kN or 425 MPa, whereas maximum deflection was observed for specimen with hemp 7.5 % + graphene 0.2 % with 1.9 mm. Graphene addition to the modified composites in combination with natural fibres showed promising results in enhancing the mechanical properties under study. Moreover, graphene-modified composites exhibited higher thermal resistance compared to natural fibre reinforced composites. However, when nanofiller reinforcement exceeded a threshold value, the composites exhibited reduced flexural strength as a result of nanofiller agglomeration

    Ab initio alpha-alpha scattering

    Get PDF
    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.Comment: 6 pages, 6 figure

    A Quantitative Analytical Method to Test for Salt Effects on Giant Unilamellar Vesicles

    Get PDF
    Today, free-standing membranes, i.e. liposomes and vesicles, are used in a multitude of applications, e.g. as drug delivery devices and artificial cell models. Because current laboratory techniques do not allow handling of large sample sizes, systematic and quantitative studies on the impact of different effectors, e.g. electrolytes, are limited. In this work, we evaluated the Hofmeister effects of ten alkali metal halides on giant unilamellar vesicles made of palmitoyloleoylphosphatidylcholine for a large sample size by combining the highly parallel water-in-oil emulsion transfer vesicle preparation method with automatic haemocytometry. We found that this new quantitative screening method is highly reliable and consistent with previously reported results. Thus, this method may provide a significant methodological advance in analysis of effects on free-standing model membranes

    Dronedarone in high-risk permanent atrial fibrillation

    Get PDF
    BACKGROUND: Dronedarone restores sinus rhythm and reduces hospitalization or death in intermittent atrial fibrillation. It also lowers heart rate and blood pressure and has antiadrenergic and potential ventricular antiarrhythmic effects. We hypothesized that dronedarone would reduce major vascular events in high-risk permanent atrial fibrillation. METHODS: We assigned patients who were at least 65 years of age with at least a 6-month history of permanent atrial fibrillation and risk factors for major vascular events to receive dronedarone or placebo. The first coprimary outcome was stroke, myocardial infarction, systemic embolism, or death from cardiovascular causes. The second coprimary outcome was unplanned hospitalization for a cardiovascular cause or death. RESULTS: After the enrollment of 3236 patients, the study was stopped for safety reasons. The first coprimary outcome occurred in 43 patients receiving dronedarone and 19 receiving placebo (hazard ratio, 2.29; 95% confidence interval [CI], 1.34 to 3.94; P = 0.002). There were 21 deaths from cardiovascular causes in the dronedarone group and 10 in the placebo group (hazard ratio, 2.11; 95% CI, 1.00 to 4.49; P = 0.046), including death from arrhythmia in 13 patients and 4 patients, respectively (hazard ratio, 3.26; 95% CI, 1.06 to 10.00; P = 0.03). Stroke occurred in 23 patients in the dronedarone group and 10 in the placebo group (hazard ratio, 2.32; 95% CI, 1.11 to 4.88; P = 0.02). Hospitalization for heart failure occurred in 43 patients in the dronedarone group and 24 in the placebo group (hazard ratio, 1.81; 95% CI, 1.10 to 2.99; P = 0.02). CONCLUSIONS: Dronedarone increased rates of heart failure, stroke, and death from cardiovascular causes in patients with permanent atrial fibrillation who were at risk for major vascular events. Our data show that this drug should not be used in such patients. (Funded by Sanofi-Aventis; PALLAS ClinicalTrials.gov number, NCT01151137.) Copyright © 2011 Massachusetts Medical Society. All rights reserved.published_or_final_versio
    • 

    corecore