13 research outputs found

    Damping signatures in future neutrino oscillation experiments

    Full text link
    We discuss the phenomenology of damping signatures in the neutrino oscillation probabilities, where either the oscillating terms or the probabilities can be damped. This approach is a possibility for tests of non-oscillation effects in future neutrino oscillation experiments, where we mainly focus on reactor and long-baseline experiments. We extensively motivate different damping signatures due to small corrections by neutrino decoherence, neutrino decay, oscillations into sterile neutrinos, or other mechanisms, and classify these signatures according to their energy (spectral) dependencies. We demonstrate, at the example of short baseline reactor experiments, that damping can severely alter the interpretation of results, e.g., it could fake a value of sin⁑(2θ13)\sin(2\theta_{13}) smaller than the one provided by Nature. In addition, we demonstrate how a neutrino factory could constrain different damping models with emphasis on how these different models could be distinguished, i.e., how easily the actual non-oscillation effects could be identified. We find that the damping models cluster in different categories, which can be much better distinguished from each other than models within the same cluster.Comment: 33 pages, 5 figures, LaTeX. Final version published in JHE

    Signature of sterile species in atmospheric neutrino data at neutrino telescopes

    Full text link
    The MiniBooNE results have still not been able to comprehensively rule out the oscillation interpretation of the LSND experiment. So far the so-called short baseline experiments with energy in the MeV range and baseline of few meters have been probing the existence of sterile neutrinos. We show how signatures of these extra sterile states could be obtained in TeV energy range atmospheric neutrinos travelling distances of thousands of kilometers. Atmospheric neutrinos in the TeV range would be detected by the upcoming neutrino telescopes. Of course vacuum oscillations of these neutrinos would be very small. However, we show that resonant matter effects inside the Earth could enhance these very tiny oscillations into near-maximal transitions, which should be hard to miss. We show that imprint of sterile neutrinos could be unambiguously obtained in this high energy atmospheric neutrino event sample. Not only would neutrino telescopes tell the presence of sterile neutrinos, it should also be possible for them to distinguish between the different possible mass and mixing scenarios with additional sterile states.Comment: 26 pages, 11 figures, Version to appear in JHE

    Biosensors based on conductometric detection

    No full text
    The present paper is a self-review on the development of about 20 conductometric biosensors based on planar electrodes and containing different biological material (enzymes, cells, antibodies), bio-mimics or synthetic membranes, including Imprinting polymers, as a sensitive element. Highly specific, sensitive, simple, fast and cheap determination of different analytes makes them promising for needs of medicine, biotechnology, environmental control, agriculture and food industry. Non-specific interference of back-ground ions may be overcome by the differential mode of measurement, the usage of rather concentrated sample buffer and additional negatively or positively charged membranes, which decrease buffer capacity influence and extend a dynamic range of sensors response. For development of easy-to-use small conductometric immunosensors several approaches seem to be promising: i) the usage of polyaniline as electroconductive label for antibodies detection in competitive electroimmunoassay; ii) the elaboration of multilayer structures with phtalocyanine films; iii) the usage of acrylic copolymeric membranes. The advantages and disadvantages of conductometric biosensors created are discussed. For future commercialisation our effort are aimed to unite a thin-film technology with membranes deposition and to find the ways of membrane stabilisation, including bio-mimics creation, utilisation of bioaffinity polymeric membranes, imprinting polymers etc.Огляд присвячСно Π°Π½Π°Π»Ρ–Π·Ρƒ власних Ρ€ΠΎΠ±Ρ–Ρ‚ Π· Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ близько 20 ΠΊΠΎΠ½Π΄ΡƒΠΊΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… біосСнсорів Π½Π° основі ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Ρ–Π² Ρ‚Π° Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½ΠΎΠ³ΠΎ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ (Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΈ, ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ, Π°Π½Ρ‚ΠΈΡ‚Ρ–Π»Π°), синтСтичних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ як Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π². Висока ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ, Ρ‡ΡƒΡ‚Π»ΠΈΠ²Ρ–ΡΡ‚ΡŒ, низька Ρ†Ρ–Π½Π°, простота Ρ‚Π° Π΅ΠΊΡΠΏΡ€Π΅ΡΠ½Ρ–ΡΡ‚ΡŒ визначСння Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Ρ€ΠΎΠ±Π»ΡΡ‚ΡŒ біосСнсори Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΈΠΌΠΈ для ΠΏΠΎΡ‚Ρ€Π΅Π± ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½ΠΈ, Π±Ρ–ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ—Ρ–, Π΅ΠΊΠΎΠ»ΠΎΠ³ΠΈ, ΡΡ–Π»ΡŒΡΡŒΠΊΠΎΠ³ΠΎ господарства Ρ‚Π° Ρ…Π°Ρ€Ρ‡ΠΎΠ²ΠΎΡ— промисловості. ΠŸΡ€ΠΈ Π°Π½Π°Π»Ρ–Π·Ρ– Ρ€Π΅Π°Π»ΡŒΠ½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΡ–Π² нСспСцифічний Π²ΠΏΠ»ΠΈΠ² Ρ„ΠΎΠ½ΠΎΠ²ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ»Ρ–Ρ‚Ρ–Π² ΠΌΠΎΠΆΠ½Π° суттєво Π·ΠΌΠ΅Π½ΡˆΠΈΡ‚ΠΈ завдяки Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚Π°Π½Π½ΡŽ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½ΡŒ, Π±Ρ–Π»ΡŒΡˆ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ²Π°Π½ΠΈΡ… Π±ΡƒΡ„Π΅Ρ€Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π², Π° Ρ‚Π°ΠΊΠΎΠΆ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΈΡ… Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ Ρ‡ΠΈ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎ зарядТСних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, які Π·Π°ΠΏΠΎΠ±Ρ–Π³Π°ΡŽΡ‚ΡŒ Π²ΠΏΠ»ΠΈΠ²ΠΎΠ²Ρ– Π±ΡƒΡ„Π΅Ρ€Π½ΠΎΡ— ємності Ρ‚Π° Ρ–ΠΎΠ½Π½ΠΎΡ— сили Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π² Ρ– Ρ€ΠΎΠ·ΡˆΠΈΡ€ΡŽΡŽΡ‚ΡŒ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΠΉ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ сСнсорів. Для створСння ΠΌΡ–Π½Ρ–Π°Ρ‚ΡŽΡ€Π½ΠΈΡ… імуносСнсорів Π±ΡƒΠ»ΠΎ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Ρ‚Π°ΠΊΡ– ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ: Π°) використання ΠΏΠΎΠ»Ρ–Π°Π½Ρ–Π»Ρ–Π½Ρƒ як Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΏΡ€ΠΎΠ²Ρ–Π΄Π½ΠΎΡ— ΠΌΡ–Ρ‚ΠΊΠΈ ΠΏΡ€ΠΈ Π²ΠΈΠ· Π½Π°Ρ‡Π΅ ΠΏΠ½Ρ– Π°Π½Ρ‚ΠΈΡ‚Ρ–Π» Ρƒ ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΠΌΡƒ Ρ–ΠΌΡƒΠ½ΠΎΠ°Π½Π°Π»Ρ–Π·Ρ–: Π±) створСння Π±Π°Π³Π°Ρ‚ΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΈΡ… структур Π· ΠΏΠ»Ρ–Π²ΠΊΠ°ΠΌΠΈ Ρ„Ρ‚Π°Π»ΠΎΡ†Ρ–Π°Π½Ρ–Π½Ρƒ; Π²) використання Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΈΡ… сополімСрних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. ΠžΠ±Π³ΠΎΠ²ΠΎΡ€Π΅Π½ΠΎ ΠΏΠ΅Ρ€Π΅Π²Π°Π³ΠΈ Ρ‚Π° Π½Π΅Π΄ΠΎΠ»Ρ–ΠΊΠΈ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΡ… ΠΊΠΎΠ½Π΄ΡƒΠΊΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… біосСнсорів. Подальша комСрціалізація Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π² ΠΏΠΎΠ²'язана Π· ΠΏΠΎΡˆΡƒΠΊΠΎΠΌ ΡˆΠ»ΡΡ…Ρ–Π² стабілізації Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρ‚Π° суміщСння Ρ‚ΠΎΠ½ΠΊΠΎΠΏΠ»Ρ–Π²ΠΊΠΎΠ²ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–ΠΉ Π· нанСсСнням ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρƒ Ρ”Π΄ΠΈΠ½ΠΎΠΌΡƒ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠΌΡƒ Ρ†ΠΈΠΊΠ»Ρ–.ΠžΠ±Π·ΠΎΡ€ посвящСн Π°Π½Π°Π»ΠΈΠ·Ρƒ собствСнных Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΎΠΊΠΎΠ»ΠΎ 20 кондуктомСтричСских биосСнсоров Π½Π°. основС ΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… элСктродов ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ биологичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, (Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°) ΠΈ синтСтичСских ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΎ качСствС Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов. Высокая ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, дСшСвизна, простота ΠΈ быстрота опрСдСлСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… вСщСств Π΄Π΅Π»Π°ΡŽΡ‚ биосСнсоры Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌΠΈ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅, Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, экологии, сСльском хозяйствС ΠΈ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² нСспСцифичСскоС влияниС Ρ„ΠΎΠ½ΠΎΠ²Ρ‹Ρ… элСктролитов ΠΌΠΎΠΆΠ½ΠΎ ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ благодаря использованию Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π±ΡƒΡ„Π΅Ρ€Π½Ρ‹Ρ… растворов, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ заряТСнных ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‰ΠΈΡ… влияниС Π±ΡƒΡ„Π΅Ρ€Π½ΠΎΠΉ Смкости ΠΈ ΠΈΠΎΠ½Π½ΠΎΠΉ силы растворов ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΡΡŽΡ‰ΠΈΡ… динамичСский Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Ρ€Π°Π±ΠΎΡ‚Ρ‹ сСнсоров. Для создания ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹Ρ… иммуносСнсоров ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹: Π°) использованиС ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠ»ΠΈΠ½Π° ΠΊΠ°ΠΊ элСктропроводящСй ΠΌΠ΅Ρ‚ΠΊΠΈ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» Π² ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ°Π½Π°Π»ΠΈΠ·Π΅; Π±) созданиС многослойных структур с ΠΏΠ»Π΅Π½ΠΊΠ°ΠΌΠΈ Π½Π° основС Ρ„Ρ‚Π°Π»ΠΎΡ†ΠΈΠ°Π½ΠΈΠ½Π°; Π²) использованиС Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²Ρ‹Ρ… со ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½Ρ‹ прСимущСства ΠΈ нСдостатки Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… кондуктомСтричСских биосСнсоров. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ°Ρ коммСрциализация, Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² связана с поиском ΠΏΡƒΡ‚Π΅ΠΉ стабилизации Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΈ совмСщСния, Ρ‚ΠΎΠ½ΠΊΠΎΠΏΠ»Π΅Π½ΠΎΡ‡Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ с нанСсСниСм ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ тСхнологичСском Ρ†ΠΈΠΊΠ»Π΅

    From parameter space constraints to the precision determination of the leptonic Dirac CP phase

    Full text link
    We discuss the precision determination of the leptonic Dirac CP phase Ξ΄CP\delta_{CP} in neutrino oscillation experiments, where we apply the concept of ``CP coverage''. We demonstrate that this approach carries more information than a conventional CP violation measurement, since it also describes the exclusion of parameter regions. This will be very useful for next-generation long baseline experiments where for sizable sin⁑22ΞΈ13\sin^2 2 \theta_{13} first constraints on Ξ΄CP\delta_{CP} can be obtained. As the most sophisticated experimental setup, we analyze neutrino factories, where we illustrate the major difficulties in their analysis. In addition, we compare their potential to the one of superbeam upgrades and next-generation experiments, which also includes a discussion of synergy effects. We find a strong dependence on the yet unknown true values of sin⁑22ΞΈ13\sin^2 2 \theta_{13} and Ξ΄CP\delta_{CP}, as well as a strong, non-Gaussian dependence on the confidence level. A systematic understanding of the complicated parameter dependence will be given. In addition, it is shown that comparisons of experiments and synergy discussions do in general not allow for an unbiased judgment if they are only performed at selected points in parameter space. Therefore, we present our results in dependence of the yet unknown true values of sin⁑22ΞΈ13\sin^2 2 \theta_{13} and Ξ΄CP\delta_{CP}. Finally we show that for Ξ΄CP\delta_{CP} precision measurements there exist simple strategies including superbeams, reactor experiments, superbeam upgrades, and neutrino factories, where the crucial discriminator is sin⁑22ΞΈ13∼10βˆ’2\sin^2 2 \theta_{13} \sim 10^{-2}.Comment: 32 pages, 9 figure

    Optimized Two-Baseline Beta-Beam Experiment

    Get PDF
    We propose a realistic Beta-Beam experiment with four source ions and two baselines for the best possible sensitivity to theta_{13}, CP violation and mass hierarchy. Neutrinos from 18Ne and 6He with Lorentz boost gamma=350 are detected in a 500 kton water Cerenkov detector at a distance L=650 km (first oscillation peak) from the source. Neutrinos from 8B and 8Li are detected in a 50 kton magnetized iron detector at a distance L=7000 km (magic baseline) from the source. Since the decay ring requires a tilt angle of 34.5 degrees to send the beam to the magic baseline, the far end of the ring has a maximum depth of d=2132 m for magnetic field strength of 8.3 T, if one demands that the fraction of ions that decay along the straight sections of the racetrack geometry decay ring (called livetime) is 0.3. We alleviate this problem by proposing to trade reduction of the livetime of the decay ring with the increase in the boost factor of the ions, such that the number of events at the detector remains almost the same. This allows to substantially reduce the maximum depth of the decay ring at the far end, without significantly compromising the sensitivity of the experiment to the oscillation parameters. We take 8B and 8Li with gamma=390 and 656 respectively, as these are the largest possible boost factors possible with the envisaged upgrades of the SPS at CERN. This allows us to reduce d of the decay ring by a factor of 1.7 for 8.3 T magnetic field. Increase of magnetic field to 15 T would further reduce d to 738 m only. We study the sensitivity reach of this two baseline two storage ring Beta-Beam experiment, and compare it with the corresponding reach of the other proposed facilities.Comment: 17 pages, 3 eps figures. Minor changes, matches version accepted in JHE

    Pioneering space based detector for study of cosmic rays beyond GZK Limit

    No full text
    Space-based detectors for study of extreme energy cosmic rays (EECR) are being prepared as promising new direction of EECR study. Pioneering space device – tracking ultraviolet set up (TUS) is at the last stage of its construction and testing. TUS detector description is presented
    corecore