460 research outputs found

    Seed System Innovations in the Semi-Arid Tropics of Andhra Pradesh

    Get PDF

    CSH 22SS – an improved sweet sorghum hybrid

    Get PDF
    Parentage: ICSA 38 x SSV 84 Medium duration hybrid: 120 days;Days to 50% fl owering: 80 to 88 days;Plant height: 280–350 cm;High stalk yield (44–52 t ha-1): 29% higher than SSV 84 and CSV 19SS. ; High ethanol yield (1250–1320 L ha-1):43% higher than SSV 84 and 34% 8% higher than CSV 19SS. High CCS (3.2–4.0 t ha-1): 33% higher than SSV 84

    WEATHER FORECASTING USING ARTIFICIAL NEURAL NETWORKS AND DATA MINING TECHNIQUES

    Get PDF
    Weather forecasts are made by collecting quantitative data about the current state of the atmosphere and using scientific understanding of atmospheric processes to project how the atmosphere will evolve. Weather prediction is basically based upon the historical time series data. The basic Data mining operations and Numerical methods are employed to get a useful pattern from a huge volume of data set. Different testing and training scenarios are performed to obtain the accurate result. To perform these kinds of predictions we are identifying the datasets. Collection of the data sets of a particular region weather report from 1901 to 2001 with 11 attributes. The collected datasets undergo pre-processing. Then clustering operation, Curve fitting and Extrapolation methods are applied, proceeding with back propagation. The Back propagation and Extrapolation results are compared. The Best future results are predicted

    High frequency impedance based fault location in distribution system with DGs

    Get PDF
    Distributed generations (DGs) in the distribution systems are connected into the buses using power electronic converters. During fault, it is challenging to provide a constant impedance model for DGs in the system frequency due to the variable converter control strategies. System frequency impedance measurement based fault locations can be influenced by the converters’ fault behaviour. This study addresses this problem by proposing a wide-area high-frequency impedance comparison based fault location technique. The high-frequency impedance model of DG is provided. Based on the constant DG impedance model in high-frequency range, the faulted line sections can be distinguished by comparing the measured impedance differences without requiring the exact distribution system parameters. Simulation results show that the proposed wide-area transient measurements based fault location method can provide accurate faulted sections in the distribution systems with DGs regardless of the load and DG output variations, measurement noise, unbalanced loads and islanding operations

    Fuel additive technology - NOx reduction, combustion efficiency and fly ash improvement for coal fired power stations

    No full text
    Fuel additive technology is based on the use of a solid, fuel additive (iron, aluminium, calcium and silicon based oxides), to reduce NOx emission, improve the quality of fly ash and result in 1-3% coal savings for pulverised coal combustion. The findings in this study have been mainly based on extensive experimentation on 100 kWth down fired-combustion test facility (CTF) and partially on a commercial 260 tons/h steam producing water tube pf boiler. International Innovative Technologies (IIT) developed this additive based technology for the combined effect of reducing NOx from the combustion of hydrocarbon fuels (mainly coal) and more specifically to improve the combustion process of fossil fuels resulting in an ash by product with improved loss on ignition and lower carbon content. The improvement in the combustion thermal efficiency of the commercial 260 tons/h steam producing boiler has been calculated as per the direct calculation method of EN BS12952-15:2003 standard. © 2014 Elsevier Ltd. All rights reserved

    Sweet Sorghum Planting Effects on Stalk Yield and Sugar Quality in Semi-Arid Tropical Environment

    Get PDF
    Sweet sorghum [Sorghum bicolor (L.) Moench] has potential as a bioenergy crop for producing food, fiber, and fermentable sugar. Unlike dryland grain sorghum, little information is available on the influence of staggered planting and genotypes, especially in semiarid tropical environments. The objectives of the present study were (i) to quantify the effects of planting time and genotype on stalk and biomass yields, juice sugar quality, and (ii) to identify the most productive genotypes and planting windows for sustainable feedstock supply. Four commercial sweet sorghum genotypes (SSV84, SSV74, CSV19SS, and CSH22SS) were planted on five planting dates (1 June, 16 June, 1 July, 16 July, and 1 August) during the rainy (June–October) season of 2008 and 2009 in Hyderabad (17°27´ N, 78°28´ E), India. Planting in early and mid-June produced significantly (P ≤ 0.05) higher fresh stalk yield and grain yield than later planting dates. Commercial hybrid CSH22SS produced significantly more stalk, grain, sugar, and ethanol yield over genotypes SSV84 or SSV74. Based on the stalk yield, juice sugar quality, sugar, and ethanol yields, the optimum planting dates for sweet sorghum in semiarid tropical climate is early June to early July. Planting sweet sorghum during this time allows more feedstock to be harvested and hence extends the period for sugar mill operation by about 1 mo, that is, from the first to the last week of October
    corecore