1,392 research outputs found
Short-time fluctuations of displacements and work
A recent theorem giving the initial behavior of very short-time fluctuations
of particle displacements in classical many-body systems is discussed. It has
applications to equilibrium and non-equilibrium systems, one of which is a
series expansion of the distribution of work fluctuations around a Gaussian
function. To determine the time-scale at which this series expansion is valid,
we present preliminary numerical results for a Lennard-Jones fluid. These
results suggest that the series expansion converges up to time scales on the
order of a picosecond, below which a simple Gaussian function for the
distribution of the displacements can be used.Comment: 10 pages, 3 figure
Exercise mediates the association between positive affect and 5-year mortality in patients with ischemic heart disease
Background Positive affect has been associated with better prognosis in patients with ischemic heart disease, but the underlying mechanisms remain unclear. We examined whether positive affect predicted time to first cardiac-related hospitalization and all-cause mortality, and whether exercise mediated this relationship in patients with established ischemic heart disease. Methods and Results The sample comprised 607 patients with ischemic heart disease from Holbæk Hospital, Denmark. In 2005, patients completed the Global Mood Scale (GMS) to assess positive affect and a purpose-designed question on exercise. Data on mortality and hospitalization were collected from Danish national registers for the period 2006–2010. Adjusted Cox and logistic regression were used to analyze the mediation model. Because no significant association between positive affect and cardiac-related hospitalization was found, we constructed no mediation model for hospitalization. Importantly, patients with high positive affect had a significantly reduced risk of all-cause mortality (hazard ratio, 0.58; 95% confidence interval, 0.37–0.92; unadjusted analysis) and were more likely to exercise (odds ratio, 1.99; 95% confidence interval, 1.44–2.76; unadjusted analysis; odds ratio, 1.48; 95% confidence interval, 1.03–2.13; adjusted analysis). When controlling for positive affect and other relevant variables, patients engaged in exercise were less likely to die during follow-up (hazard ratio, 0.50; 95% confidence interval, 0.31–0.80; P=0.004). Importantly, exercise acted as a mediator in the relationship between positive affect and mortality. Conclusions Patients with higher levels of positive affect were more likely to exercise and had a lower risk of dying during 5-year follow-up, with exercise mediating the relationship between positive affect and mortality. Interventions aimed at increasing both positive affect and exercise may have better results with respect to patients’ prognosis and psychological well-being than interventions focusing on 1 of these factors alone
Precursors of catastrophe in the BTW, Manna and random fiber bundle models of failure
We have studied precursors of the global failure in some self-organised
critical models of sand-pile (in BTW and Manna models) and in the random fiber
bundle model (RFB). In both BTW and Manna model, as one adds a small but fixed
number of sand grains (heights) to any central site of the stable pile, the
local dynamics starts and continues for an average relaxation time (\tau) and
an average number of topplings (\Delta) spread over a radial distance (\xi). We
find that these quantities all depend on the average height (h_{av}) of the
pile and they all diverge as (h_{av}) approaches the critical height (h_{c})
from below: (\Delta) (\sim (h_{c}-h_{av}))(^{-\delta}), (\tau \sim
(h_{c}-h_{av})^{-\gamma}) and (\xi) (\sim) ((h_{c}-h_{av})^{-\nu}). Numerically
we find (\delta \simeq 2.0), (\gamma \simeq 1.2) and (\nu \simeq 1.0) for both
BTW and Manna model in two dimensions. In the strained RFB model we find that
the breakdown susceptibility (\chi) (giving the differential increment of the
number of broken fibers due to increase in external load) and the relaxation
time (\tau), both diverge as the applied load or stress (\sigma) approaches the
network failure threshold (\sigma_{c}) from below: (\chi) (\sim) ((\sigma_{c})
(-)(\sigma)^{-1/2}) and (\tau) (\sim) ((\sigma_{c}) (-)(\sigma)^{-1/2}). These
self-organised dynamical models of failure therefore show some definite
precursors with robust power laws long before the failure point. Such
well-characterised precursors should help predicting the global failure point
of the systems in advance.Comment: 13 pages, 9 figures (eps
Sensitive Observations of Radio Recombination Lines in Orion and W51: The Data and Detection of Systematic Recombination Line Blueshifts Proportional to Impact Broadening
Sensitive spectral observations made in two frequency bands near 6.0 and 17.6
GHz are described for Orion and W51. Using frequency switching we were able to
achieve a dynamic range in excess of 10,000 without fitting sinusoidal or
polynomial baselines. This enabled us to detect lines as weak as T\Delta n$ as
high as 25 have been detected in Orion. In the Orion data, where the lines are
stronger, we have also detected a systematic shift in the line center
frequencies proportional to linewidth that cannot be explained by normal
optical depth effects.Comment: 22 pages, 13 figures. Accepted for publication in Astrophysics and
Space Scienc
Spatial infinity in higher dimensional spacetimes
Motivated by recent studies on the uniqueness or non-uniqueness of higher
dimensional black hole spacetime, we investigate the asymptotic structure of
spatial infinity in n-dimensional spacetimes(). It turns out that the
geometry of spatial infinity does not have maximal symmetry due to the
non-trivial Weyl tensor {}^{(n-1)}C_{abcd} in general. We also address static
spacetime and its multipole moments P_{a_1 a_2 ... a_s}. Contrasting with four
dimensions, we stress that the local structure of spacetimes cannot be unique
under fixed a multipole moments in static vacuum spacetimes. For example, we
will consider the generalized Schwarzschild spacetimes which are deformed black
hole spacetimes with the same multipole moments as spherical Schwarzschild
black holes. To specify the local structure of static vacuum solution we need
some additional information, at least, the Weyl tensor {}^{(n-2)}C_{abcd} at
spatial infinity.Comment: 6 pages, accepted for publication in Physical Review D, published
versio
Cosmological Implications of Neutrinos
The lectures describe several cosmological effects produced by neutrinos.
Upper and lower cosmological limits on neutrino mass are derived. The role that
neutrinos may play in formation of large scale structure of the universe is
described and neutrino mass limits are presented. Effects of neutrinos on
cosmological background radiation and on big bang nucleosynthesis are
discussed. Limits on the number of neutrino flavors and mass/mixing are given.Comment: 41 page, 7 figures; lectures presented at ITEP Winter School,
February, 2002; to be published in the Proceeding
Current constraints on Cosmological Parameters from Microwave Background Anisotropies
We compare the latest observations of Cosmic Microwave Background (CMB)
Anisotropies with the theoretical predictions of the standard scenario of
structure formation. Assuming a primordial power spectrum of adiabatic
perturbations we found that the total energy density is constrained to be
while the energy density in baryon and Cold Dark
Matter (CDM) are and ,
(all at 68% C.L.) respectively. The primordial spectrum is consistent with
scale invariance, () and the age of the universe is
Gyrs. Adding informations from Large Scale Structure and
Supernovae, we found a strong evidence for a cosmological constant
and a value of the Hubble parameter
. Restricting this combined analysis to flat universes, we put
constraints on possible 'extensions' of the standard scenario. A gravity waves
contribution to the quadrupole anisotropy is limited to be (95%
c.l.). A constant equation of state for the dark energy component is bound to
be (95% c.l.). We constrain the effective relativistic degrees
of freedom and the neutrino chemical potential and (massless neutrinos).Comment: The status of cosmological parameters before WMAP. In press on Phys.
Rev. D., Rapid Communication, 6 pages, 5 figure
Event Reconstruction in the PHENIX Central Arm Spectrometers
The central arm spectrometers for the PHENIX experiment at the Relativistic
Heavy Ion Collider have been designed for the optimization of particle
identification in relativistic heavy ion collisions. The spectrometers present
a challenging environment for event reconstruction due to a very high track
multiplicity in a complicated, focusing, magnetic field. In order to meet this
challenge, nine distinct detector types are integrated for charged particle
tracking, momentum reconstruction, and particle identification. The techniques
which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure
- …