719 research outputs found
Nucleon Spin-Polarisabilities from Polarisation Observables in Low-Energy Deuteron Compton Scattering
We investigate the dependence of polarisation observables in elastic deuteron
Compton scattering below the pion production threshold on the spin-independent
and spin-dependent iso-scalar dipole polarisabilities of the nucleon. The
calculation uses Chiral Effective Field Theory with dynamical Delta(1232)
degrees of freedom in the Small Scale Expansion at next-to-leading order.
Resummation of the NN intermediate rescattering states and including the Delta
induces sizeable effects. The analysis considers cross-sections and the
analysing power of linearly polarised photons on an unpolarised target, and
cross-section differences and asymmetries of linearly and circularly polarised
beams on a vector-polarised deuteron. An intuitive argument helps one to
identify kinematics in which one or several polarisabilities do not contribute.
Some double-polarised observables are only sensitive to linear combinations of
two of the spin-polarisabilities, simplifying a multipole-analysis of the data.
Spin-polarisabilities can be extracted at photon energies \gtrsim 100 MeV,
after measurements at lower energies of \lesssim 70 MeV provide high-accuracy
determinations of the spin-independent ones. An interactive Mathematica 7.0
notebook of our findings is available from [email protected]: 30 pages LaTeX2e, including 22 figures as 66 .eps file embedded with
includegraphicx; three errors in initial submission corrected. This
submission includes ot the erratum to be published in EPJA (2012) and the
corrections in the tex
Deconstructing 1S0 nucleon-nucleon scattering
A distorted-wave method is used to analyse nucleon-nucleon scattering in the
1S0 channel. Effects of one-pion exchange are removed from the empirical phase
shift to all orders by using a modified effective-range expansion. Two-pion
exchange is then subtracted in the distorted-wave Born approximation, with
matrix elements taken between scattering waves for the one-pion exchange
potential. The residual short-range interaction shows a very rapid energy
dependence for kinetic energies above about 100 MeV, suggesting that the
breakdown scale of the corresponding effective theory is only 270MeV. This may
signal the need to include the Delta resonance as an explicit degree of freedom
in order to describe scattering at these energies. An alternative strategy of
keeping the cutoff finite to reduce large, but finite, contributions from the
long-range forces is also discussed.Comment: 10 pages, 2 figures (introduction revised, references added; version
to appear in EPJA
Evaluation of dimensional stability, surface roughness, colour, flexural properties and decay resistance of thermally modified Acacia auriculiformis
This paper presents the effect of thermal modification of 14-15 year-old plantation grown Acacia auriculiformis wood in the 150-240ºC temperature range under vacuum condition. Important techno-mechanical parameters of thermally modified wood such as density, dimensional stability, colour, surface roughness, decay resistance against brown and white rot fungi and flexural properties were evaluated and compared with control. Depending on severity of heat treatment, colour of modified sapwood was turned from light to dark brownish. Moreover, the change in colour was found to be uniform throughout the thickness of wood blocks. Amount of shrinkage of Acacia auriculiformis wood was observed to be decreased with increasing treatment temperatures. Maximum dimensional stability of wood thermally modified at 240ºC was in the range of 60-65%. The surface roughness parameters (Ra and Rz) were reduced significantly after the treatment. The flexural strength (modulus of rupture-MOR) was observed to be reduced with increasing treatment temperatures. However, flexural stiffness (modulus of elasticity-MOE) was not found to be affected significantly up to 210ºC temperature. The lower amount of weight loss of thermally modified wood compared to untreated control showed improved decay resistance against white and brown rot fungi. With desirable improvements in various esthetic and technologically important quality parameters such as enhanced dimensional stability, biological durability against fungi and certain other properties, thermally modified wood from short-rotation Acacia auriculiformis may be considered as viable alternative to scarcely available timber resource for different value-added applications
The Effects of Disorder on the Quantum Hall State
A disorder-averaged Hartree-Fock treatment is used to compute the density of
single particle states for quantum Hall systems at filling factor . It
is found that transport and spin polarization experiments can be simultaneously
explained by a model of mostly short-range effective disorder. The slope of the
transport gap (due to quasiparticles) in parallel field emerges as a result of
the interplay between disorder-induced broadening and exchange, and has
implications for skyrmion localization.Comment: 4 pages, 3 eps figure
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
The Glauber model and the heavy ion reaction cross section
We reexamine the Glauber model and calculate the total reaction cross section
as a function of energy in the low and intermediate energy range, where many of
the corrections in the model, are effective.
The most significant effect in this energy range is by the modification of
the trajectory due to the Coulomb field. The modification in the trajectory due
to nuclear field is also taken into account in a self consistent way.
The energy ranges in which particular corrections are effective, are
quantified and it is found that when the center of mass energy of the system
becomes 30 times the Coulomb barrier, none of the trajectory modification to
the Glauber model is really required.
The reaction cross sections for light and heavy systems, right from near
coulomb barrier to intermediate energies have been calculated. The exact
nuclear densities and free nucleon-nucleon (NN) cross sections have been used
in the calculations. The center of mass correction which is important for light
systems, has also been taken into account.
There is an excellent agreement between the calculations with the modified
Glauber model and the experimental data. This suggests that the heavy ion
reactions in this energy range can be explained by the Glauber model in terms
of free NN cross sections without incorporating any medium modification.Comment: RevTeX, 21 pages including 9 Postscript figures, submitted to Phys.
Rev.
Tight-binding parameters for charge transfer along DNA
We systematically examine all the tight-binding parameters pertinent to
charge transfer along DNA. The molecular structure of the four DNA bases
(adenine, thymine, cytosine, and guanine) is investigated by using the linear
combination of atomic orbitals method with a recently introduced
parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are
discussed and then used for calculating the corresponding wavefunctions of the
two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO
and LUMO energies of the bases are in good agreement with available
experimental values. Our results are then used for estimating the complete set
of charge transfer parameters between neighboring bases and also between
successive base-pairs, considering all possible combinations between them, for
both electrons and holes. The calculated microscopic quantities can be used in
mesoscopic theoretical models of electron or hole transfer along the DNA double
helix, as they provide the necessary parameters for a tight-binding
phenomenological description based on the molecular overlap. We find that
usually the hopping parameters for holes are higher in magnitude compared to
the ones for electrons, which probably indicates that hole transport along DNA
is more favorable than electron transport. Our findings are also compared with
existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table
Universal Correlations in Pion-less EFT with the Resonating Group Model: Three and Four Nucleons
The Effective Field Theory "without pions" at next-to-leading order is used
to analyze universal bound state and scattering properties of the 3- and
4-nucleon system. Results of a variety of phase shift equivalent nuclear
potentials are presented for bound state properties of 3H and 4He, and for the
singlet S-wave 3He-neutron scattering length a_0(3He-n). The calculations are
performed with the Refined Resonating Group Method and include a full treatment
of the Coulomb interaction and the leading-order 3-nucleon interaction. The
results compare favorably with data and values from AV18(+UIX) model
calculations. A new correlation between a_0(3He-n) and the 3H binding energy is
found. Furthermore, we confirm at next-to-leading order the correlations,
already found at leading-order, between the 3H binding energy and the 3H charge
radius, and the Tjon line. With the 3H binding energy as input, we get
predictions of the Effective Field Theory "without pions" at next-to-leading
order for the root mean square charge radius of 3H of (1.6\pm 0.2) fm, for the
4He binding energy of (28\pm 2.5) MeV, and for Re(a_0(3He-n)) of (7.5\pm
0.6)fm. Including the Coulomb interaction, the splitting in binding energy
between 3H and 3He is found to be (0.66\pm 0.03) MeV. The discrepancy to data
of (0.10\mp 0.03) MeV is model independently attributed to higher order charge
independence breaking interactions. We also demonstrate that different results
for the same observable stem from higher order effects, and carefully assess
that numerical uncertainties are negligible. Our results demonstrate the
convergence and usefulness of the pion-less theory at next-to-leading order in
the 4He channel. We conclude that no 4-nucleon interaction is needed to
renormalize the theory at next-to-leading order in the 4-nucleon sector.Comment: 24 pages revtex4, including 8 figures as .eps files embedded with
includegraphicx, leading-order results added, calculations include the LO
three-nucleon interaction explicitly, comment on Wigner bound added, minor
modification
Measurement of Mass and Width of the W Boson at LEP
We report on measurements of the mass and total decay width of the W boson
with the L3 detector at LEP. W-pair events produced in
interactions between 161 GeV and 183 GeV centre-of-mass energy are selected in
a data sample corresponding to a total luminosity of 76.7 pb. Combining
all final states in W-pair production, the mass and total decay width of the W
boson are determined to be GeV and
GeV, respectively
- …
