33 research outputs found

    Structure and relaxations in liquid and amorphous Selenium

    Get PDF
    We report a molecular dynamics simulation of selenium, described by a three-body interaction. The temperatures T_g and T_c and the structural properties are in agreement with experiment. The mean nearest neighbor coordination number is 2.1. A small pre-peak at about 1 AA^-1 can be explained in terms of void correlations. In the intermediate self-scattering function, i.e. the density fluctuation correlation, classical behavior, alpha- and beta-regimes, is found. We also observe the plateau in the beta-regime below T_g. In a second step, we investigated the heterogeneous and/or homogeneous behavior of the relaxations. At both short and long times the relaxations are homogeneous (or weakly heterogeneous). In the intermediate time scale, lowering the temperature increases the heterogeneity. We connect these different domains to the vibrational (ballistic), beta- and alpha-regimes. We have also shown that the increase in heterogeneity can be understood in terms of relaxations

    An interlaboratory comparison on the characterization of a sub-micrometer polydisperse particle dispersion

    Get PDF
    The measurement of polydisperse protein aggregates and particles in biotherapeutics remains a challenge, especially for particles with diameters of ≈ 1 µm and below (sub-micrometer). This paper describes an interlaboratory comparison with the goal of assessing the measurement variability for the characterization of a sub-micrometer polydisperse particle dispersion composed of five sub-populations of poly(methyl methacrylate) (PMMA) and silica beads. The study included 20 participating laboratories from industry, academia, and government, and a variety of state-of-the-art particle-counting instruments. The received datasets were organized by instrument class to enable comparison of intralaboratory and interlaboratory performance. The main findings included high variability between datasets from different laboratories, with coefficients of variation from 13 % to 189 %. Intralaboratory variability was, on average, 37 % of the interlaboratory variability for an instrument class and particle sub-population. Drop-offs at either end of the size range and poor agreement on maximum counts of particle sub-populations were noted. The mean distributions from an instrument class, however, showed the size-coverage range for that class. The study shows that a poly-disperse sample can be used to assess performance capabilities of an instrument set-up (including hardware, software, and user settings) and provides guidance for the development of polydisperse reference materials.Drug Delivery Technolog

    Delphin2: an over actuated autonomous underwater vehicle for manoeuvring research

    Get PDF
    Delphin2 is a hover capable torpedo style Autonomous Underwater Vehicle (AUV), developed at the University of Southampton to provide a test bed for research in marine robotics, primarily to enhance the manoeuvring capability of AUVs. This paper describes the mechanical design of the vehicle and its software architecture. The performance of the vehicle is presented as well as preliminary findings from the vehicle’s first fully autonomous video survey issions in Lough Erne, Northern Ireland. It is interesting to note that the low-cost of the vehicle and its development using a succession of MEng and PhD students has provided an excellent training environment for specialists in the growing area of marine autonomous vehicles.<br/

    Evaluating the self-propulsion of a container ship in a seastate using computational fluid dynamics

    No full text
    An important area of ship design that requires the development of unsteady computational fluid dynamics is the ability to evaluate accurately the unsteady propulsive efficiency of a ship in waves. A reliable capability to do this would allow design selection of hull forms that have maximum propulsive efficiency across their required operating range of seastates. In this paper we consider the necessary steps in validating the assessment of wave and viscous hull resistance, the computational efficiency of representing the propulsion effects of a propeller and finally the influence of an incident wave on the overall propulsive forces. The Korean Container Ship, KCS, is chosen due to the availability of good quality experimental data and the relative magnitudes of the resistance components. Two different flow solvers are applied and a variety of meshing strategies. Overall, good predictions of the self-propelled ship condition are possible if an appropriate, flow feature adapted, mesh of sufficiently high density and quality is use
    corecore