400 research outputs found
Neutrinos in Non-linear Structure Formation - The Effect on Halo Properties
We use N-body simulations to find the effect of neutrino masses on halo
properties, and investigate how the density profiles of both the neutrino and
the dark matter components change as a function of the neutrino mass. We
compare our neutrino density profiles with results from the N-one-body method
and find good agreement. We also show and explain why the Tremaine-Gunn bound
for the neutrinos is not saturated. Finally we study how the halo mass function
changes as a function of the neutrino mass and compare our results with the
Sheth-Tormen semi-analytic formulae. Our results are important for surveys
which aim at probing cosmological parameters using clusters, as well as future
experiments aiming at measuring the cosmic neutrino background directly.Comment: 20 pages, 8 figure
Spin Structure of the Pion in a Light-Cone Representation
The spin structure of the pion is discussed by transforming the wave function
for the pion in the naive quark model into a light-cone representation. It is
shown that there are higher helicity () states in
the full light-cone wave function for the pion besides the ordinary helicity
() component wave functions as a consequence from
the Melosh rotation relating spin states in light-front dynamics and those in
instant-form dynamics. Some low energy properties of the pion, such as the
electromagnetic form factor, the charged mean square radius, and the weak decay
constant, could be interrelated in this representation with reasonable
parameters.Comment: 15 Latex pages, 2 figures upon reques
Instanton Contribution to the Pion Electro-Magnetic Formfactor at Q^2 > 1 GeV^2
We study the effects of instantons on the charged pion electro-magnetic
formfactor at intermediate momenta. In the Single Instanton Approximation
(SIA), we predict the pion formfactor in the kinematic region Q^2=2-15 GeV^2.
By developing the calculation in a mixed time-momentum representation, it is
possible to maximally reduce the model dependence and to calculate the
formfactor directly. We find the intriguing result that the SIA calculation
coincides with the vector dominance monopole form, up to surprisingly high
momentum transfer Q^2~10 GeV^2. This suggests that vector dominance for the
pion holds beyond low energy nuclear physics.Comment: 8 pages, 5 figures, minor revision
Avalanche dynamics, surface roughening and self-organized criticality - experiments on a 3 dimensional pile of rice
We present a two-dimensional system which exhibits features of self-organized
criticality. The avalanches which occur on the surface of a pile of rice are
found to exhibit finite size scaling in their probability distribution. The
critical exponents are = 1.21(2) for the avalanche size distribution and
= 1.99(2) for the cut-off size. Furthermore the geometry of the avalanches
is studied leading to a fractal dimension of the active sites of =
1.58(2). Using a set of scaling relations, we can calculate the roughness
exponent = 0.41(3) and the dynamic exponent = 1.56(8). This result is compared with that obtained from a power
spectrum analysis of the surface roughness, which yields = 0.42(3) and
= 1.5(1) in excellent agreement with those obtained from the scaling
relations.Comment: 7 pages, 8 figures, accepted for publication in PR
King or royal family? Testing for species boundaries in the King Cobra, Ophiophagus hanah (Cantor, 1836), using morphology and multilocus DNA analyses
In widespread species, the diverse ecological conditions in which the populations occur, and the presence of
many potential geographical barriers through their range are expected to have created ample opportunities for
the evolution of distinct, often cryptic lineages. In this work, we tested for species boundaries in one such
widespread species, the king cobra, Ophiophagus hannah (Cantor, 1836), a largely tropical elapid snake
distributed across the Oriental realm. Based on extensive geographical sampling across most of the range of the
species, we initially tested for candidate species (CS) using Maximum-Likelihood analysis of mitochondrial genes.
We then tested the resulting CS using both morphological data and sequences of three single-copy nuclear genes.
We used snapclust to determine the optimal number of clusters in the nuclear dataset, and Bayesian Phylogenetics and Phylogeography (BPP) to test for likely species status. We used non-metric multidimensional scaling
(nMDS) analysis for discerning morphological separation. We recovered four independently evolving,
geographically separated lineages that we consider Confirmed Candidate Species: (1) Western Ghats lineage; (2)
Indo-Chinese lineage (3) Indo-Malayan lineage; (4) Luzon Island lineage, in the Philippine Archipelago. We
discuss patterns of lineage divergence, particularly in the context of low morphological divergence, and the
conservation implications of recognizing several endemic king cobra lineages
Ecological Complex Systems
Main aim of this topical issue is to report recent advances in noisy
nonequilibrium processes useful to describe the dynamics of ecological systems
and to address the mechanisms of spatio-temporal pattern formation in ecology
both from the experimental and theoretical points of view. This is in order to
understand the dynamical behaviour of ecological complex systems through the
interplay between nonlinearity, noise, random and periodic environmental
interactions. Discovering the microscopic rules and the local interactions
which lead to the emergence of specific global patterns or global dynamical
behaviour and the noises role in the nonlinear dynamics is an important, key
aspect to understand and then to model ecological complex systems.Comment: 13 pages, Editorial of a topical issue on Ecological Complex System
to appear in EPJ B, Vol. 65 (2008
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
- …