174 research outputs found

    Rapid analysis of pyrethroid insecticides in aquaculture seawater samples via membrane-assisted solvent extraction coupled with gas chromatography-electron capture detection

    Get PDF
    A simple, efficient, and environmentally friendly membrane-assisted solvent extraction (MASE) method for the extraction and preconcentration of six pyrethroid insecticides from aquaculture seawater samples followed by gas chromatography-electron capture detection (GC-ECD) was successfully proposed. The operating conditions for MASE, such as the extraction solvent, solvent volume, NaCl concentration, stirring rate, extraction time, and temperature, were optimized. Compared to conventional Florisil-solid phase extraction (SPE), higher extraction recoveries (85.9% to 105.9%) of three spiked levels of the six pyrethroid pesticides in aquaculture seawater were obtained using MASE, and the RSD values were lower than 7.9%. The limits of detection (LOD, signal-to-noise ratio (S/N)=3) and quantification (LOQ, S/N = 10) were in the range of 0.037–0.166 and 0.12–0.55 µg L-1, respectively. The results demonstrate the excellent applicability of the MASE method in analyzing the six pyrethroid pesticides in aqueous samples. The proposed method exhibited a high potential for routine monitoring analysis of pyrethroid insecticides in seawater samples

    SSVEP-based Brain-Computer Interface Controlled Robotic Platform with Velocity Modulation

    Get PDF
    Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have been extensively studied due to many benefits, such as non-invasiveness, high information transfer rate, and ease of use. SSVEP-based BCI has been investigated in various applications by projecting brain signals to robot control commands. However, the movement direction and speed are generally fixed and prescribed, neglecting the user’s requirement for velocity changes during practical implementations. In this study, we proposed a velocity modulation method based on stimulus brightness for controlling the robotic arm in the SSVEP-based BCI system. A stimulation interface was designed, incorporating flickers, target and a cursor workspace. The synchronization of the cursor and robotic arm does not require the subject’s eye switch between the stimuli and the robot. The feature vector consists of the characteristics of the signal and the classification result. Subsequently, the Gaussian mixture model (GMM) and Bayesian inference were used to calculate the posterior probabilities that the signal came from a high or low brightness flicker. A brain-actuated speed function was designed by incorporating the posterior probability difference. Finally, the historical velocity was considered to determine the final velocity. To demonstrate the effectiveness of the proposed method, online experiments, including single- and multi-target reaching tasks, were conducted. The extensive experimental results validated the feasibility of the proposed method in reducing reaching time and achieving proximity to the target

    Quantitative Upper Limb Impairment Assessment for Stroke Rehabilitation: A Review

    Get PDF
    With the number of people surviving a stroke soaring, automated upper limb impairment assessment has been extensively investigated in the past decades since it lays the foundation for personalised precision rehabilitation. The recent advancement of sensor systems, such as high-precision and real-time data transmission, have made it possible to quantify the kinematic and physiological parameters of stroke patients. In this paper, we review the development of sensor-based upper limb quantitative impairment assessment, concentrating on the capable of comprehensively and accurately detecting motion parameters and measuring physiological indicators to achieve the objective and rapid quantification of the stroke severity. The paper discusses various features used by different sensors, detectable actions, their utilization techniques, and effects of sensor placement on system accuracy and stability. In addition, both the advantages and disadvantages of the model-based and model-free algorithms are also reviewed. Furthermore, challenges encompassing comprehensive assessment of medical scales, neurological deficits assessment, random movement detection, the effect of the sensor placement, and the effect of the number of sensors are also discussed

    Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Full text link
    In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman et al observed a linearly dispersing collective mode in quantum Hall ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion at small wave vector, the experimental mode velocity is slower than that calculated by previous theories by a factor about 0.55. A better agreement with the experimental data may possibly be achieved by taking the subband Landau level coupling into account due to the finiteness of the layer thickness. A novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio

    Partial Wave Analysis of J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∼500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψ→γηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+K−π+π−\gamma K^+K^-\pi^+\pi^-, γπ+π−π+π−\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π∓\gamma K^\pm K^0_S \pi^\mp (with KS0→π+π−K^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕ→K+K−\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.

    Direct Measurements of the Branching Fractions for D0→K−e+νeD^0 \to K^-e^+\nu_e and D0→π−e+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0→K−e+νeD^0 \to K^-e ^+\nu_e and D0→π−e+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0→K−e+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0→π−e+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0→K−e+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0→π−e+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+π(0)∣=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+π(0)/f+K(0)∣=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
    • …
    corecore