9 research outputs found

    Single-neutron transfer from 11Be gs via the (p,d) reaction with a radioactive beam

    Full text link
    The 11Be(p,d)10Be reaction has been performed in inverse kinematics with a radioactive 11Be beam of E/A = 35.3 MeV. Angular distributions for the 0+ ground state, the 2+, 3.37 MeV state and the multiplet of states around 6 MeV in 10Be were measured at angles up to 16 deg CM by detecting the 10Be in a dispersion-matched spectrometer and the coincident deuterons in a silicon array. Distorted wave and coupled-channels calculations have been performed to investigate the amount of 2+ core excitation in 11Be gs. The use of "realistic" 11Be wave functions is emphasised and bound state form factors have been obtained by solving the particle-vibration coupling equations. This calculation gives a dominant 2s component in the 11Be gs wave function with a 16% [2+ x 1d] core excitation admixture. Cross sections calculated with these form factors are in good agreement with the present data. The Separation Energy prescription for the bound state wave function also gives satisfactory fits to the data, but leads to a significantly larger [2 x 1d] component in 11Be gs.Comment: 39 pages, 12 figures. Accepted for publication in Nuclear Physics A. Added minor corrections made in proof to pages 26 and 3

    The "1"2C+"1"2C `6#alpha#-chain state' resonance

    No full text
    Available from British Library Document Supply Centre-DSC:DXN003594 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Quench characteristics of bi2212 solenoid insert coils in background field up to 20 T

    No full text
    The use of wind and react bi2212 wire for high field ( >;20 T) insert coils has been demonstrated to be a promising technology. While cryogenic stability and quench propagation are fundamental issues for the design and safe operation of superconducting magnets there is little data for the high field application. The present work shows data from systematic quench measurements at 4.2 K on two 6-layer 300 mm high bi2212 solenoid coils at different currents I between 50% and 95% of Ic in different background fields of 15, 18 and 20 T from a wide bore compact NbTi-Nb3Sn magnet developed by Oxford Instruments. The quench was induced by localized heat pulses (20–100 ms) and recorded with temporal-spatial resolved voltage taps and thermometers. By precise control of the power delivered in the heat pulse, the minimum quench energy MQE and the time constant for the quasi-stationary minimum propagation zone MPZ was obtained for each test condition. MQE was found to follow a scaling law of Ic2/I4 in three different coils. The MPZ exhibited the expected anisotropy, extending predominately in the tangential direction and confined in a single winding layer. The propagation was also predominantly along the winding layer with a relatively slow velocity less than 50 cm/s, with an even lower radial propagation velocity of simsim3 mm/s. In the present study, the interplay between the HTS coils and with the LTS background field were also measured and the results are highly relevant to the design of 20 T plus high field magnets with integrated LTS and HTS coils. The results were analysed in the context of a wide current temperature range for current sharing in the bi2212 wire and the T3 dependence of heat capacity at low temperatures

    Search for molecular states in 16^{16}C

    No full text
    In order to search for a proposed α :2n :α :2n :α molecular structure in 16C its break-up into 10Be + 6He, 12Be + α, 8He + 2α and 6He + 6He + α has been studied using a 560 MeV 16C beam inelastically excited on a 12C target. States in 16C appear to be only weakly populated in this reaction.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Helium breakup states in 10^{10}Be and 12^{12}Be

    No full text
    The breakup of 10,12Be into He clusters has been studied using the p,12C(12Be,6He,6He) and 12C(12Be,4He,6He) inelastic scattering and two neutron transfer reactions with a 378 MeV 12Be beam incident on 12C and (CH2)n targets. Evidence has been found for three new states in 10Be at excitation energies of 13.2, 14.8, and 16.1 MeV, which may be associated with a 4He+6He cluster structure. The evidence for He cluster states in 12Be in the excitation energy range 12 to 25 MeV is also discussed
    corecore