882 research outputs found
Using qualitative research methods to inform user centred design of an innovative assistive technology device
The SPECS project aims to develop a speech-driven device that will allow the home environment to be controlled (for example turning on or off the lights or television). The device developed will be targeted at older people and people with disabilities and will be sensitive to disordered speech. Current environmental control systems (ECS) work using either a switch interface or speech recognition software that does not comprehend disordered speech well. Switch-interface systems are often slow and complicated to use and the uptake of the available speech recognition system has been poor. A significant proportion of people requiring electronic assistive technology (EAT) have dysarthria, a motor speech disorder, associated with their physical disability. Speech control of EAT is seen as desirable for such people but machine recognition of dysarthric speech is a difficult problem due to the variability of their articulatory output. Other work on large vocabulary adaptive speech recognition systems and speaker dependent recognisers has not provided a solution for severely dysarthric speech. Building on the work of the STARDUST project our goal is to develop and implement speech recognition as a viable control interface for people with severe physical disability and severe dysarthria. The SPECS project is funded by the Health Technology Devices Programme of the Department of Health
Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme
We analyze and discuss the quantum noise in signal-recycled laser
interferometer gravitational-wave detectors, such as Advanced LIGO, using a
heterodyne readout scheme and taking into account the optomechanical dynamics.
Contrary to homodyne detection, a heterodyne readout scheme can simultaneously
measure more than one quadrature of the output field, providing an additional
way of optimizing the interferometer sensitivity, but at the price of
additional noise. Our analysis provides the framework needed to evaluate
whether a homodyne or heterodyne readout scheme is more optimal for second
generation interferometers from an astrophysical point of view. As a more
theoretical outcome of our analysis, we show that as a consequence of the
Heisenberg uncertainty principle the heterodyne scheme cannot convert
conventional interferometers into (broadband) quantum non-demolition
interferometers.Comment: 16 pages, 8 figure
Linear Stability of Triangular Equilibrium Points in the Generalized Photogravitational Restricted Three Body Problem with Poynting-Robertson Drag
In this paper we have examined the linear stability of triangular equilibrium
points in the generalised photogravitational restricted three body problem with
Poynting-Robertson drag. We have found the position of triangular equilibrium
points of our problem. The problem is generalised in the sense that smaller
primary is supposed to be an oblate spheroid. The bigger primary is considered
as radiating. The equations of motion are affected by radiation pressure force,
oblateness and P-R drag. All classical results involving photogravitational and
oblateness in restricted three body problem may be verified from this result.
With the help of characteristic equation, we discussed the stability. Finally
we conclude that triangular equilibrium points are unstable.Comment: accepted for publication in Journal of Dynamical Systems & Geometric
Theories Vol. 4, Number 1 (2006
Influence of dynamical scattering in crystalline poly„vinylidene
The effective Debye temperature of poly(vinylidene fluoride-trifluoroethylene) copolymers was measured using photoemission and neutron diffraction techniques. An effective Debye temperature of 53611K is obtained from the photoemission data and 6963.5K from neutron diffraction measurements. This effective Debye temperature is a consequence of the temperature-dependent dynamic motions perpendicular to the surface of these crystalline polymer films
Influence of dynamical scattering in crystalline poly„vinylidene
The effective Debye temperature of poly(vinylidene fluoride-trifluoroethylene) copolymers was measured using photoemission and neutron diffraction techniques. An effective Debye temperature of 53611K is obtained from the photoemission data and 6963.5K from neutron diffraction measurements. This effective Debye temperature is a consequence of the temperature-dependent dynamic motions perpendicular to the surface of these crystalline polymer films
Lattice-Stiffening Transition in Copolymer Films of Vinylidene Fluoride (70%) with Trifluoroethylene (30%)
We report the discovery of a compressibility phase transition at 160 K in crystalline copolymer films of vinylidene fluoride ( 70%) with trifluoroethylene ( 30%). This phase transition is distinct from the known bulk ferroelectric-paraelectric phase transition at 353 K and surface ferroelectric phase transition at 295 K. The new phase transition is characterized by an increase in the effective Debye temperature from 48 to 245 K along the 〈010〉 direction as the temperature falls below 160 K. This phase transition is evident in neutron scattering, x-ray diffraction, angle-resolved photoemission, and in the dipole active phonon modes in electron energy-loss spectroscopy
Dynamical Chiral Symmetry Breaking on the Light Front I. DLCQ Approach
Dynamical chiral symmetry breaking in the DLCQ method is investigated in
detail using a chiral Yukawa model closely related to the Nambu-Jona-Lasinio
model. By classically solving three constraints characteristic of the
light-front formalism, we show that the chiral transformation defined on the
light front is equivalent to the usual one when bare mass is absent. A quantum
analysis demonstrates that a nonperturbative mean-field solution to the
``zero-mode constraint'' for a scalar boson (sigma) can develop a nonzero
condensate while a perturbative solution cannot. This description is due to our
identification of the ``zero-mode constraint'' with the gap equation. The
mean-field calculation clarifies unusual chiral transformation properties of
fermionic field, which resolves a seemingly inconsistency between triviality of
the null-plane chiral charge Q_5|0>=0 and nonzero condensate. We also calculate
masses of scalar and pseudoscalar bosons for both symmetric and broken phases,
and eventually derive the PCAC relation and nonconservation of Q_5 in the
broken phase.Comment: Revised version to appear in Phys. Rev. D. 19 pages, 4 figures,
REVTEX. Derivation of the PCAC relation is given. Its relation to the
nonconservation of chiral charge is clarified. 1 figure and some references
adde
Nosology of genetic skeletal disorders: 2023 revision.
The "Nosology of genetic skeletal disorders" has undergone its 11th revision and now contains 771 entries associated with 552 genes reflecting advances in molecular delineation of new disorders thanks to advances in DNA sequencing technology. The most significant change as compared to previous versions is the adoption of the dyadic naming system, systematically associating a phenotypic entity with the gene it arises from. We consider this a significant step forward as dyadic naming is more informative and less prone to errors than the traditional use of list numberings and eponyms. Despite the adoption of dyadic naming, efforts have been made to maintain strong ties to the MIM catalog and its historical data. As with the previous versions, the list of disorders and genes in the Nosology may be useful in considering the differential diagnosis in the clinic, directing bioinformatic analysis of next-generation sequencing results, and providing a basis for novel advances in biology and medicine
Motion of dust in mean-motion resonances with planets
Effect of stellar electromagnetic radiation on motion of spherical dust
particle in mean-motion orbital resonances with a planet is investigated.
Planar circular restricted three-body problem with the Poynting-Robertson (P-R)
effect yields monotonous secular evolution of eccentricity when the particle is
trapped in the resonance. Elliptically restricted three-body problem with the
P-R effect enables nonmonotonous secular evolution of eccentricity and the
evolution of eccentricity is qualitatively consistent with the published
results for the complicated case of interaction of electromagnetic radiation
with nonspherical dust grain. Thus, it is sufficient to allow either nonzero
eccentricity of the planet or nonsphericity of the grain and the orbital
evolutions in the resonances are qualitatively equal for the two cases. This
holds both for exterior and interior mean-motion orbital resonances. Evolutions
of longitude of pericenter in the planar circular and elliptical restricted
three-body problems are shown. Our numerical integrations suggest that any
analytic expression for secular time derivative of the particle's longitude of
pericenter does not exist, if a dependence on semi-major axis, eccentricity and
longitude of pericenter is considered (the P-R effect and mean-motion resonance
with the planet in circular orbit is taken into account).
Change of optical properties of the spherical grain with the heliocentric
distance is also considered. The change of the optical properties: i) does not
have any significant influence on secular evolution of eccentricity, ii) causes
that the shift of pericenter is mainly in the same direction/orientation as the
particle motion around the Sun. The statements hold both for circular and
noncircular planetary orbits.Comment: 22 pages, 12 figure
Influence of fast interstellar gas flow on dynamics of dust grains
The orbital evolution of a dust particle under the action of a fast
interstellar gas flow is investigated. The secular time derivatives of
Keplerian orbital elements and the radial, transversal, and normal components
of the gas flow velocity vector at the pericentre of the particle's orbit are
derived. The secular time derivatives of the semi-major axis, eccentricity, and
of the radial, transversal, and normal components of the gas flow velocity
vector at the pericentre of the particle's orbit constitute a system of
equations that determines the evolution of the particle's orbit in space with
respect to the gas flow velocity vector. This system of differential equations
can be easily solved analytically. From the solution of the system we found the
evolution of the Keplerian orbital elements in the special case when the
orbital elements are determined with respect to a plane perpendicular to the
gas flow velocity vector. Transformation of the Keplerian orbital elements
determined for this special case into orbital elements determined with respect
to an arbitrary oriented plane is presented. The orbital elements of the dust
particle change periodically with a constant oscillation period or remain
constant. Planar, perpendicular and stationary solutions are discussed.
The applicability of this solution in the Solar system is also investigated.
We consider icy particles with radii from 1 to 10 micrometers. The presented
solution is valid for these particles in orbits with semi-major axes from 200
to 3000 AU and eccentricities smaller than 0.8, approximately. The oscillation
periods for these orbits range from 10^5 to 2 x 10^6 years, approximately.Comment: 22 pages, 3 figures; Accepted for publication in Celestial Mechanics
and Dynamical Astronom
- …