716 research outputs found
Stochastic modeling of cargo transport by teams of molecular motors
Many different types of cellular cargos are transported bidirectionally along
microtubules by teams of molecular motors. The motion of this cargo-motors
system has been experimentally characterized in vivo as processive with rather
persistent directionality. Different theoretical approaches have been suggested
in order to explore the origin of this kind of motion. An effective theoretical
approach, introduced by M\"uller et al., describes the cargo dynamics as a
tug-of-war between different kinds of motors. An alternative approach has been
suggested recently by Kunwar et al., who considered the coupling between motor
and cargo in more detail. Based on this framework we introduce a model
considering single motor positions which we propagate in continuous time.
Furthermore, we analyze the possible influence of the discrete time update
schemes used in previous publications on the system's dynamic.Comment: Cenference proceedings - Traffic and Granular Flow 1
A note on brane tension and M-theory
We point out that some M-theory results for brane tension can be derived from
Polchinski's formula for D-brane tension. We also argue that this formula
determines gravitational and gauge couplings in the low energy but quantum
exact effective action.Comment: 9 pages, Latex. Appendix on the resolution of an apparent conflict
with the M theory quantization result of Duff et al added. Final version to
be published in Phys. Lett.
Spinodal decomposition, nuclear fog and two characteristic volumes in thermal multifragmentation
Thermal multifragmentation of hot nuclei is interpreted as the nuclear
liquid-fog phase transition inside the spinodal region. The experimental data
for p(8.1GeV) + Au collisions are analyzed within the framework of the
statistical multifragmentation model (SMM) for the events with emission of at
least two IMFs. It is found that the partition of hot nuclei is specified after
expansion to a volume equal to Vt = (2.6+-0.3) Vo, with Vo as the volume at
normal density. However, the freeze-out volume is found to be twice as large:
Vf = (5+-1) Vo.Comment: 8 pages, 6 figures, to be published in Nucl.Phys.
Short communication: Circulating and milk adiponectin change differently during energy deficiency at different stages of lactation in dairy cows
Adiponectin, one of the most abundant adipokines in circulation, is known for its role in regulation of body metabolism. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages of lactation (lactational NEB at the onset of lactation and an induced NEB by feed restriction near 100 d of lactation) on circulating adiponectin concentrations. We also investigated the effect of feed restriction on adiponectin concentrations in milk and the relationships of blood and milk adiponectin with selected plasma or milk variables and with measures of body condition. Plasma adiponectin was measured in 50 multiparous Holstein dairy cows throughout 3 experimental periods [i.e., period 1=3 wk antepartum up to 12 wk postpartum, period 2=3 wk of feed restriction starting at around 100 d in milk with a control (n=25) and feed-restricted group (50% of energy requirements; n=25), and period 3=subsequent realimentation period for 8 wk]. Milk adiponectin was investigated among 21 multiparous cows at wk 2 and wk 12 of period 1 and wk 2 of period 2. Adiponectin concentrations in plasma and skim milk were measured using an in-house ELISA specific for bovine adiponectin. Major changes in circulating adiponectin concentrations were observed during the periparturient period, whereas energy deficiency during established lactation at around 100 d in milk and subsequent refeeding did not affect plasma adiponectin. Together with lower adiponectin concentrations in milk (µg/mL), the reduction in milk yield led to decreased adiponectin secretion via milk (mg/d) at the second week of feed restriction. Irrespective of time and treatment, milk adiponectin represented about 0.002% of total milk protein. Mean adiponectin concentrations in milk (0.61 ± 0.03 µg/mL) were about 92% lower than the mean plasma adiponectin concentrations (32.1 ± 1.0 µg/mL). The proportion of the steady-state plasma adiponectin pool secreted daily via milk was 2.7%. In view of the similar extent of NEB in both periods of energy deficiency, decreasing adiponectin concentrations seems important for accomplishing the adaptation to the rapidly increasing metabolic rates in early lactation, whereas the lipolytic reaction toward feed restriction-induced NEB during established lactation seems to occur largely independent of changes in circulating adiponectin
Convenient Versus Unique Effective Action Formalism in 2D Dilaton-Maxwell Quantum Gravity
The structure of one-loop divergences of two-dimensional dilaton-Maxwell
quantum gravity is investigated in two formalisms: one using a convenient
effective action and the other a unique effective action. The one-loop
divergences (including surface divergences) of the convenient effective action
are calculated in three different covariant gauges: (i) De Witt, (ii)
-degenerate De Witt, and (iii) simplest covariant. The on-shell
effective action is given by surface divergences only (finiteness of the
-matrix), which yet depend upon the gauge condition choice.
Off-shell renormalizability is discussed and classes of renormalizable
dilaton and Maxwell potentials are found which coincide in the cases of
convenient and unique effective actions. A detailed comparison of both
situations, i.e. convenient vs. unique effective action, is given. As an
extension of the procedure, the one-loop effective action in two-dimensional
dilaton-Yang-Mills gravity is calculated.Comment: 25 pages, LaTeX file, HUPD-93-0
The (LATTICE) QCD Potential and Running Coupling: How to Accurately Interpolate between Multi-Loop QCD and the String Picture
We present a simple parameterization of a running coupling constant, defined
via the static potential, that interpolates between 2-loop QCD in the UV and
the string prediction in the IR. Besides the usual \Lam-parameter and the
string tension, the coupling depends on one dimensionless parameter,
determining how fast the crossover from UV to IR behavior occurs (in principle
we know how to take into account any number of loops by adding more
parameters). Using a new Ansatz for the LATTICE potential in terms of the
continuum coupling, we can fit quenched and unquenched Monte Carlo results for
the potential down to ONE lattice spacing, and at the same time extract the
running coupling to high precision. We compare our Ansatz with 1-loop results
for the lattice potential, and use the coupling from our fits to quantitatively
check the accuracy of 2-loop evolution, compare with the Lepage-Mackenzie
estimate of the coupling extracted from the plaquette, and determine Sommer's
scale much more accurately than previously possible. For pure SU(3) we
find that the coupling scales on the percent level for .Comment: 47 pages, incl. 4 figures in LaTeX [Added remarks on correlated vs.
uncorrelated fits in sect. 4; corrected misprints; updated references.
Nuclear multifragmentation and fission: similarity and differences
Thermal multifragmentation of hot nuclei is interpreted as the nuclear
liquid--fog phase transition deep inside the spinodal region. The experimental
data for p(8.1GeV) + Au collisions are analyzed. It is concluded that the decay
process of hot nuclei is characterized by two size parameters: transition state
and freeze-out volumes. The similarity between dynamics of fragmentation and
ordinary fission is discussed. The IMF emission time is related to the mean
rupture time at the multi-scission point, which corresponds to the kinetic
freeze-out configuration.Comment: 7 pages, 3 Postscript figures, Proceedings of IWM 2005, Catani
Confinement in the Coulomb Gauge Model
The Coulomb gauge model of QCD is studied with the introduction of a
confining potential into the scalar part of the vector potential. Using a Green
function formalism, we derive the self-energy for this model, which has both
scalar and vector parts, and . A rotation of these
variables leads to the so-called gap and energy equations. We then analyse the
divergence structure of these equations. As this depends explicitly on the form
of potential, we give as examples both the linear plus Coulomb and
quadratically confining potentials. The nature of the confining single particle
Green function is investigated, and shown to be divergent due to the infrared
singularities caused by the confining potential. Solutions to the gap equation
for the simpler case of quadratic confinement are found both semi-analytically
and numerically. At finite temperatures, the coupled set of equations are
solved numerically in two decoupling approximations. Although chiral symmetry
is found only to be exactly restored as , the chiral condensate
displays a steep drop over a somewhat small temperature range.Comment: 31 pages Revtex, 2 PS files containing 11 figures, accepted for
publication in Annals Of Physics (NY
Dynamical Chiral Symmetry Breaking on the Light Front I. DLCQ Approach
Dynamical chiral symmetry breaking in the DLCQ method is investigated in
detail using a chiral Yukawa model closely related to the Nambu-Jona-Lasinio
model. By classically solving three constraints characteristic of the
light-front formalism, we show that the chiral transformation defined on the
light front is equivalent to the usual one when bare mass is absent. A quantum
analysis demonstrates that a nonperturbative mean-field solution to the
``zero-mode constraint'' for a scalar boson (sigma) can develop a nonzero
condensate while a perturbative solution cannot. This description is due to our
identification of the ``zero-mode constraint'' with the gap equation. The
mean-field calculation clarifies unusual chiral transformation properties of
fermionic field, which resolves a seemingly inconsistency between triviality of
the null-plane chiral charge Q_5|0>=0 and nonzero condensate. We also calculate
masses of scalar and pseudoscalar bosons for both symmetric and broken phases,
and eventually derive the PCAC relation and nonconservation of Q_5 in the
broken phase.Comment: Revised version to appear in Phys. Rev. D. 19 pages, 4 figures,
REVTEX. Derivation of the PCAC relation is given. Its relation to the
nonconservation of chiral charge is clarified. 1 figure and some references
adde
Glassy Vortex State in a Two-Dimensional Disordered XY-Model
The two-dimensional XY-model with random phase-shifts on bonds is studied.
The analysis is based on a renormalization group for the replicated system. The
model is shown to have an ordered phase with quasi long-range order. This
ordered phase consists of a glass-like region at lower temperatures and of a
non-glassy region at higher temperatures. The transition from the disordered
phase into the ordered phase is not reentrant and is of a new universality
class at zero temperature. In contrast to previous approaches the disorder
strength is found to be renormalized to larger values. Several correlation
functions are calculated for the ordered phase. They allow to identify not only
the transition into the glassy phase but also an additional crossover line,
where the disconnected vortex correlation changes its behavior on large scales
non-analytically. The renormalization group approach yields the glassy features
without a breaking of replica symmetry.Comment: latex 12 pages with 3 figures, using epsf.sty and multicol.st
- …