38 research outputs found

    Growth Based Morphogenesis of Vertebrate Limb Bud

    Get PDF
    Many genes and their regulatory relationships are involved in developmental phenomena. However, by chemical information alone, we cannot fully understand changing organ morphologies through tissue growth because deformation and growth of the organ are essentially mechanical processes. Here, we develop a mathematical model to describe the change of organ morphologies through cell proliferation. Our basic idea is that the proper specification of localized volume source (e.g., cell proliferation) is able to guide organ morphogenesis, and that the specification is given by chemical gradients. We call this idea “growth-based morphogenesis.” We find that this morphogenetic mechanism works if the tissue is elastic for small deformation and plastic for large deformation. To illustrate our concept, we study the development of vertebrate limb buds, in which a limb bud protrudes from a flat lateral plate and extends distally in a self-organized manner. We show how the proportion of limb bud shape depends on different parameters and also show the conditions needed for normal morphogenesis, which can explain abnormal morphology of some mutants. We believe that the ideas shown in the present paper are useful for the morphogenesis of other organs

    The renal parenchymal factor

    Get PDF
    No Abstract

    FT-Ir identification of phytase active lactic acdi bacteria and yeasts from sourdough samples

    No full text
    Immune systems provide a unique window on the evolution of individuality. Existing models of immune systems fail to consider them as situated within a biochemical context. We present a model that uses an NK landscape as an underlying metabolic substrate, represents organisms as having both internal and external structure, and provides a basis for studying the coevolution of pathogens and host immune responses. Early results from the model are discussed; we show that interaction between organisms drives a population to optima distinct from those found when adapting against an abiotic background
    corecore