897 research outputs found

    Variation in the Thyrotropic Activity of Human Chorionic Gonadotropin in Chinese Hamster Ovary Cells Arises from Differential Expression of the Human Thyrotropin Receptor and Microheterogeneity of the Hormone.

    Get PDF
    The role of hCG as a stimulator of the human thyroid has been a subject of controversy, because discrepant results have been obtained in different in vitro assays. In an attempt to explain the variation observed in the thyroid response to hCG, we investigated the ability of hCG and that of its isoforms and glycosylation variants to inhibit [125I]bovine (b) TSH binding and stimulate adenylate cyclase in two clones, JP09 and JP26, of Chinese hamster ovary cells stably transfected with the human TSH receptor (hTSHr). The two clones differed with respect to the number of hTSHr expressed per cell (34,000 in JP09 and 2,000 in JP26 cells). Both responded extremely well to bTSH; the cAMP response to 0.001 IU/L bTSH was distinguishable from basal values. Interestingly, JP09 cells were readily stimulated by hCG (20-100 mg/L; 0.52-2.6 x 10(-6) mol/L) to release cAMP, whereas JP26 cells showed little if any response. Also, cAMP stimulation produced by asialo-hCG was 12-fold in JP09 cells and only 4-fold in JP26 cells compared to 45- and 67-fold stimulations by bTSH, respectively. Stimulation by asialo-hCG was approximately 30% that of bTSH in JP09 cells, but less than 6% in JP26 cells. When assessing the thyrotropic activity of the microheterogeneous isoforms of hCG, more alkaline pI forms were found to be more active than those of a more acidic pI regardless of whether they were derived from normal or molar pregnancy urine. Further studies with hCG, asialo-hCG, asialoagalacto-hCG, and deglycosylated hCG revealed that removal of sialic acid caused a marked increase in both its affinity for hTSHr and its cAMP-releasing potency, whereas removal of further carbohydrate, although it slightly enhanced receptor binding, was detrimental to adenylate cyclase activation. In conclusion, differences in hTSHr expression may cause a variation in the cAMP response to hCG or its glycosylation variants, as does the microheterogeneity of the hormone itself. These mechanisms may be responsible at least in part for the divergent responses of different cell types to hCG and render interpretation of the physiological meaning of the data obtained in recombinant receptor systems difficult

    Conservation Laws and 2D Black Holes in Dilaton Gravity

    Full text link
    A very general class of Lagrangians which couple scalar fields to gravitation and matter in two spacetime dimensions is investigated. It is shown that a vector field exists along whose flow lines the stress-energy tensor is conserved, regardless of whether or not the equations of motion are satisfied or if any Killing vectors exist. Conditions necessary for the existence of Killing vectors are derived. A new set of 2D black hole solutions is obtained for one particular member within this class of Lagrangians. One such solution bears an interesting resemblance to the 2D string-theoretic black hole, yet contains markedly different thermodynamic properties.Comment: 11 pgs. WATPHYS-TH92/0

    Indication on the universal hadron substructure - constituent quarks

    Full text link
    The universality of single-spin asymmetry on inclusive pi-meson production is discussed. This universality can be related to the hadron substructure - constituent quarks.Comment: 3 pages, 3 figures, references adde

    How a Non-hierarchical Neutrino Mass Matrix Can Arise

    Full text link
    One puzzle of neutrino masses and mixings is that they do not exhibit the kind of strong "hierarchy" that is found for the quarks and charged leptons. Neutrino mass ratios and mixing angles are not small. A possible reason for this is proposed here. It is based on the fact that typical realistic grand unified models contain particles with unification-scale masses which, when integrated out, can yield a neutrino mass matrix that is not of the standard seesaw form.Comment: 12 pages, 5 figures, LaTe

    Present Status of Neutrino Mixing

    Get PDF
    A short review of the status of neutrino mixing and neutrino oscillations is given. The basics of neutrino mixing and oscillations is discussed. The latest evidences of neutrino oscillations obtained in the Super-Kamiokande and the SNO solar neutrino experiments and in the Super-Kamiokande atmospheric neutrino experiment are considered. The results of solar and atmospheric neutrino experiments are discussed from the point of view of the three-neutrino mixing.Comment: 20 pages, Proceedings of the Advanced Study Institute "Symmetries and Spin", Praha-Spin-2001, Czech Republic, July 15-28, 200

    Neutrinoless double-beta decay with three or four neutrino mixing

    Full text link
    Considering the scheme with mixing of three neutrinos and a mass hierarchy that can accommodate the results of solar and atmospheric neutrino experiments, it is shown that the results of solar neutrino experiments imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay, under the natural assumptions that massive neutrinos are Majorana particles and there are no unlikely fine-tuned cancellations among the contributions of the different neutrino masses. Considering the four-neutrino schemes that can accommodate also the results of the LSND experiment, it is shown that only one of them is compatible with the results of neutrinoless double-beta decay experiments and with the measurement of the abundances of primordial elements produced in Big-Bang Nucleosynthesis. It is shown that in this scheme, under the assumptions that massive neutrinos are Majorana particles and there are no cancellations among the contributions of the different neutrino masses, the results of the LSND experiment imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay.Comment: 18 pages including 2 figures, RevTe

    Self-completeness and spontaneous dimensional reduction

    Get PDF
    A viable quantum theory of gravity is one of the biggest challenges facing physicists. We discuss the confluence of two highly expected features which might be instrumental in the quest of a finite and renormalizable quantum gravity -- spontaneous dimensional reduction and self-completeness. The former suggests the spacetime background at the Planck scale may be effectively two-dimensional, while the latter implies a condition of maximal compression of matter by the formation of an event horizon for Planckian scattering. We generalize such a result to an arbitrary number of dimensions, and show that gravity in higher than four dimensions remains self-complete, but in lower dimensions it is not. In such a way we established an "exclusive disjunction" or "exclusive or" (XOR) between the occurrence of self-completeness and dimensional reduction, with the goal of actually reducing the unknowns for the scenario of the physics at the Planck scale. Potential phenomenological implications of this result are considered by studying the case of a two-dimensional dilaton gravity model resulting from dimensional reduction of Einstein gravity.Comment: 12 pages, 3 figures; v3: final version in press on Eur. Phys. J. Plu

    Propagators and WKB-exactness in the plane wave limit of AdSxS

    Full text link
    Green functions for the scalar, spinor and vector fields in a plane wave geometry arising as a Penrose limit of AdSĂ—SAdS\times S are obtained. The Schwinger-DeWitt technique directly gives the results in the plane wave background, which turns out to be WKB-exact. Therefore the structural similarity with flat space results is unveiled. In addition, based on the local character of the Penrose limit, it is claimed that for getting the correct propagators in the limit one can rely on the first terms of the direct geodesic contribution in the Schwinger-DeWitt expansion of the original propagators . This is explicitly shown for the Einstein Static Universe, which has the same Penrose limit as AdSĂ—SAdS\times S with equal radii, and for a number of other illustrative cases.Comment: 18 pages, late

    Family Unification with SO(10)

    Get PDF
    Unification based on the group SO(10)^3 \times S_3 is studied. Each family has its own SO(10) group, and the S_3 permutes the three families and SO(10) factors. This is the maximal local symmetry for the known fermions. Family unification is achieved in the sense that all known fermions are in a single irreducible multiplet of the symmetry. The symmetry suppresses SUSY flavor changing effects by making all squarks and sleptons degenerate in the symmetry limit. Doublet-triplet splitting can arise simply, and non-trivial structure of the quark and lepton masses emerges from the gauge symmetry, including the "doubly lopsided" form.Comment: 11 pages, references adde

    TeV scale resonant leptogenesis from supersymmetry breaking

    Full text link
    We propose a model of TeV-scale resonant leptogenesis based upon recent models of the generation of light neutrino masses from supersymmetry-breaking effects with TeV-scale right-handed (rhd) neutrinos, NiN_i. The model leads to naturally large cosmological lepton asymmetries via the resonant behaviour of the one-loop self-energy contribution to NiN_i decay. Our model addresses the primary problems of previous phenomenological studies of low-energy leptogenesis: a rational for TeV-scale rhd neutrinos with small Yukawa couplings so that the out-of equilibrium condition for NiN_i decay is satisfied; the origin of the tiny, but non-zero mass splitting required between at least two NiN_i masses; and the necessary non-trivial breaking of flavour symmetries in the rhd neutrino sector. The low mass-scale of the rhd neutrinos and their superpartners, and the TeV-scale AA-terms automatically contained within the model offer opportunities for partial direct experimental tests of this leptogenesis mechanism at future colliders.Comment: 10 Pages latex, version for JHE
    • …
    corecore