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Abstract

Unification based on the group SO(10)3 × S3 is studied. Each family has its own SO(10) group, and the S3 permutes the three families and
SO(10) factors. This is the maximal local symmetry for the known fermions. Family unification is achieved in the sense that all known fermions
are in a single irreducible multiplet of the symmetry. The symmetry suppresses SUSY flavor changing effects by making all squarks and sleptons
degenerate in the symmetry limit. Doublet–triplet splitting can arise simply, and non-trivial structure of the quark and lepton masses emerges from
the gauge symmetry, including the “doubly lopsided” form.
© 2008 Elsevier B.V. Open access under CC BY license.
In this Letter we propose the idea of family unification based
on the group SO(10)×SO(10)×SO(10)×S3, where each fam-
ily of quarks and leptons transforms as a spinor under its own
SO(10), and where the S3 permutes the three families and the
three SO(10) factors.

This structure has several interesting features. First, it may
be the only way to achieve family unification [1] satisfacto-
rily in four space–time dimensions. (Attempts to unify families
in complex spinors of SO(4n + 2) groups have not resulted
in realistic models, since these spinors contain families and
mirror families when decomposed to the Standard Model sym-
metry [1]. Family unification can occur in higher dimensions,
as in heterotic string theory [2]. For family unification in five,
six and other dimensions, see [3].) Here we define family uni-
fication to mean that all three families of quarks and leptons
including their right-handed neutrinos are contained in a sin-
gle irreducible representation of the unification group, and that
there is a single gauge coupling constant at high scales. (This
definition is broader than that often used, in which the three
families form an irreducible representation of a simple group.)
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It should be noted that in the scheme we propose here the
families are in a reducible representation of SO(10)3, namely
{(16,1,1) + (1,16,1) + (1,1,16)}, but these form an irre-
ducible multiplet of the full unification group that includes
the S3 factor.

Second, the group SO(10) × SO(10) × SO(10) × S3 is the
largest that can be gauged with 48 fermions forming a complex
but anomaly-free set of representations. In that sense, it is the
“maximal local symmetry” of the known quarks and leptons,
including the right-handed neutrinos. (In [4], the definition of
maximal local symmetry also included the condition that the
group be simple. By that more restrictive definition, the max-
imal local symmetry of 48 fermions would be just SO(10).)
It is easy to see that the S3 factor is anomaly free. S3 makes
the gauge couplings of all SO(10) groups equal. As a result,
the instanton effects of the three SO(10) groups will also be
S3-invariant, proving that it is anomaly free. (The cyclic per-
mutation group Z3, which is often considered in such contexts
is a subgroup of this S3. Incidently, in the model we present it
might appear that it is possible to gauge additional U(1) fac-
tors, where under these U(1)’s the fermions are rotated into
themselves by a phase factor and the gauge bosons are invari-
ant. However, the only anomaly free part of these U(1)’s are
the Z4 centers of the SO(10) groups. It is interesting that the S3
does not commute with these Z4, and other SO(10), transfor-
mations.)
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Third, the unification of all the known quarks and leptons
in a single irreducible multiplet of a local group suppresses
SUSY flavor changing processes by making all squark and slep-
ton masses exactly degenerate at the unification scale.

Fourth, the problem of “doublet–triplet splitting” can be
solved more easily with this group than in ordinary SO(10)

unification by means of the Dimopoulos–Wilczek mecha-
nism [5] also known as the “missing VEV mechanism”.
That the Dimopoulos–Wiczek mechanism is straightforward
to implement in product groups like SU(5) × SU(5) and
SO(10) × SO(10) was pointed out in [6–8]. The stability
of the VEV structure however is non-trivial to achieve in
SO(10) × SO(10) models, as that requires rank reduction of
the diagonal SO(10) [9]. As will be shown, the present frame-
work resolves this issue very neatly.

And, finally, the “vertical” group SO(10)3 is also in a sense
a “family group”, since the three families transform differently
under any one of the SO(10) groups. As will be seen later,
highly non-trivial patterns emerge in the mass matrices of the
quarks and leptons due primarily to the symmetry SO(10)3,
though S3 also plays a role. Some of the patterns that emerge
almost automatically in this framework have already been pro-
posed in the literature on purely phenomenological grounds,
such as the “doubly lopsided” structure [10].

We will describe a supersymmetric SO(10)3 × S3 model
that illustrates some of the possibilities of the idea. The quarks
and leptons are in the representation {(16,1,1) + (1,16,1) +
(1,1,16)}, which we shall denote (16,1,1) + cyclic for short.
The Higgs doublets of the Standard Model are contained in the
“fundamental” Higgs multiplet (10,1,1) + cyclic. Two kinds
of Higgs multiplets are needed to do breaking of SU(3)3 × S3
to the Standard Model and give superheavy mass to the right-
handed neutrinos. We take these to be the “bifundamental”
Higgs multiplet (10,10,1) + cyclic and the “bispinor” Higgs
multiplet (16,16,1) + cyclic (plus the conjugate bispinor mul-
tiplet (16,16,1)).

The Standard Model group is contained within the “diagonal
SO(10)” of the three factor SO(10) groups. Under this diagonal
SO(10) subgroup, the bifundamentals contain the representa-
tions 1+45+54, while the bispinors contain 10+126+120. It
is well known that a Higgs field in the bifundamental represen-
tation of a group G×G can break it to the diagonal subgroup G.
Similarly, a set of bifundamentals can break G × G × G to
the diagonal subgroup of the three factor groups. In our model,
there is a minimum of the scalar potential where the vacuum ex-
pectation values (VEVs) of the bifundamentals break SO(10)3

all the way down to a diagonal SU(3)c × SU(2)L × U(1) ×
U(1), as will be seen. The bispinors, whose VEVs give mass
to the right-handed neutrinos, break the extra U(1) to give the
Standard Model group.

The quark and lepton multiplets will be denoted ψa , a =
1,2,3, where ψ1 ≡ (16,1,1), ψ2 ≡ (1,16,1), and ψ3 ≡
(1,1,16). The fundamental Higgs fields will be denoted Ha ,
where H1 ≡ (10,1,1), etc. The bifundamental Higgs fields
will be denoted Ωab , where Ω12 ≡ (10,10,1), etc. A second
set of bifundamentals will also be needed, and will be denoted
Ω ′ . And the bispinors will be denoted �ab and �̄ab , where
ab
�12 ≡ (16,16,1) and �̄12 ≡ (16,16,1), etc. The indices a

and b are not SO(10) indices (which we suppress) but merely
labels that indicate which SO(10) groups the multiplets trans-
form non-trivially under. These labels are permuted under the
S3 group.

Only two renormalizable terms are allowed by the gauge
symmetry in the Yukawa superpotential of the quarks and lep-
tons, namely

WYuk = Y(ψ1ψ1H1 + ψ2ψ2H2 + ψ3ψ3H3)

(1)+ Y ′(ψ1ψ2�̄12 + ψ2ψ3�̄23 + ψ3ψ1�̄31).

The Higgs superpotential can be written in an obvious nota-
tion as WHiggs = WH +WΩ +W� +WHΩ +WΩ� +WH�. Let
us focus first on WΩ . If there is only one set of bifundamentals
Ωab , then the most general renormalizable form of WΩ consis-
tent with symmetry is

WΩ = 1

2
M(trΩ12Ω21 + trΩ23Ω32 + trΩ31Ω13)

(2)+ λ(trΩ12Ω23Ω31).

The order of labels ab on Ωab is significant. If (Ωab)
ij is the

ij element of the 10 × 10 matrix Ωab, then the row index i be-
longs to the group SO(10)a and the column index j belongs to
the group SO(10)b . This superpotential gives rise to the equa-
tions of motion Ω21 = (λ/M)Ω23Ω31, Ω32 = (λ/M)Ω31Ω12,
and Ω13 = (λ/M)Ω12Ω23, which, of course, are S3 permuted
versions of each other. Doublet–triplet splitting by means of
the Dimopoulos–Wilczek mechanism would require that the
VEV of at least one of these bifundamentals had the form
〈Ω〉 = diag(a a a 0 0) ⊗ iτ2 (corresponding to the generator
B–L of the diagonal SO(10) and the generator diag(a a a 0 0)

of the diagonal U(5)). However, it is easily seen from the three
equations of motion, that if any one of the Ωab has a VEV of
this form, all three of them would have a similar form (in some
basis), i.e., would vanish in the lower 4 × 4 block and there-
fore a subgroup SO(4)3 = (SU(2)L × SU(2)R)3 would remain
unbroken by the bifundamentals. And even after breaking by
the bispinor Higgs VEVs there would still remain an unbroken
(SU(2)L)3. Thus the form in Eq. (2) is too simple to give the
bifundamental VEVs the Dimopoulos–Wilczek form and also
break the symmetry down to the Standard Model group at low
energies.

Satisfactory breaking can happen if there are two sets of
bifundamentals, Ωab and Ω ′

ab , where Ω ′
ab is odd under a Z2

parity and Ωab is even. Then the most general renormalizable
form of WΩ is

WΩ = 1

2
M(trΩ12Ω21 + trΩ23Ω32 + trΩ31Ω13)

+ 1

2
M ′(trΩ ′

12Ω
′
21 + trΩ ′

23Ω
′
32 + trΩ ′

31Ω
′
13)

+ λ(trΩ12Ω23Ω31) + λ′(trΩ12Ω
′
23Ω

′
31

(3)+ trΩ ′
12Ω23Ω

′
31 + trΩ ′

12Ω
′
23Ω31).

The equations of motion then become: Ωba = −(λ/M) ×
ΩbcΩca + (λ′/M)Ω ′

bcΩ
′
ca and Ω ′

ba = −(λ′/M ′)× (Ω ′
bcΩca +

ΩbcΩ
′ ). These equations have many interesting solutions. The
ca
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one that seems phenomenologically most interesting has VEVs
of the following form:

Ω12 =
(

A 0
0 B

)
, Ω23 = Ω31 =

(
A 0
0 0

)
,

(4)Ω ′
12 =

(
A′ 0
0 0

)
, Ω ′

23 = Ω ′
31 =

(
A′ 0
0 B ′

)
,

where A and A′ are 6 × 6 matrices and B and B ′ are 4 × 4
matrices, given by

A = aI6, A′ = a′I3 ⊗ iτ2,

(5)B = bI4, B ′ = b′I2 ⊗ iτ2,

and where a = M ′
2λ′ , a′ =

√
MM ′
2λ′2 + λM ′2

4λ′3 , b = M ′
λ′ , and b′ =

√
MM ′
λ′ . At this minimum, the bifundamentals break SO(10)3

down to a diagonal SU(3) × SU(2) × U(1) × U(1).
To illustrate some of the possibilities, we mention a few

other solutions of the many that exist: (i) One can have the
same form as in Eqs. (4) and (5) but with A′ = a′I6, a′ =√

MM ′
2λ′2 − λM ′2

4λ′3 . This breaks SO(10)3 down to SU(4)×SU(2)×
U(1) × U(1). (ii) One can have the same form as in Eqs. (4)

and (5) but with B ′ = b′I4, b′ =
√+MM ′

λ′ . This breaks the sym-
metry down to SU(3) × SU(2) × SU(2) × U(1). (iii) One can
have the same form as in Eqs. (4) and (5) but with both the
substitutions of cases (i) and (ii). This would break the group
only down to the Pati–Salam group SU(4) × SU(2) × SU(2).
(iv) There are solutions where all three of the Ωab have the
form that Ω12 has in Eq. (4) and all three of the Ω ′

ab have the
form that Ω ′

12 has in Eq. (4). (v) There are solutions where the
matrices have different forms than shown in Eq. (4), for exam-
ple having different rank than 4, 6, or 10. Some of the unbroken
groups that can result are SU(5)×U(1), SU(4)×U(1)×U(1),
SO(8) × SO(2). A complete analysis of all the minima would
be rather lengthy.

The form in Eq. (4) is a useful one for the purposes of
doublet–triplet splitting, as it can lead to a single pair of Higgs
doublets being light. To see this, consider WHΩ , whose most
general renormalizable form consistent with symmetry is

(6)WHΩ = λHΩ(H1Ω12H2 + H2Ω23H3 + H3Ω31H1).

Similar terms with Ω ′
ab are ruled out by the Z2 parity. If the

explicit mass term (H1H1 + H2H2 + H3H3) is forbidden (or
suppressed to be of order the weak scale) by symmetry (for
example a softly broken discrete symmetry or an R symmetry)
then the mass matrix of the color-triplets and weak-doublets in
Ha have the form

(7)M3 =
( 0 a a

a 0 a

a a 0

)
, M2 =

( 0 b 0
b 0 0
0 0 0

)
.

It is apparent that only a single pair of doublet Higgs fields
(namely those in H3) remain light, as needed for gauge-
coupling unification. Therefore, only H3 will get a weak-
interaction-breaking VEV, and because of the form of the
Yukawa superpotential given in Eq. (1) only the third family
of quarks and leptons will get mass. Below it will be shown
that higher dimension operators can generate other entries in
the quark and lepton mass matrices, allowing non-zero (but
presumably smaller) masses for the other families and CKM
mixing. It is interesting that the SO(10)3 × S3 symmetry and
a choice of minimum consistent with a single pair of light
Higgs doublets leads to a natural hierarchy wherein one family
is heavier than the others.

In order to give mass to the right-handed neutrinos the
bispinors �̄ab must receive non-vanishing VEVs such that both
spinors of the bispinor point in the Standard Model-singlet
direction. One possible superpotential which achieves this is
given below.

W� = λ�

{(
�12�̄12 − M2)S12 + (

�23�̄23 − M2)S23

(8)+ (
�31�̄31 − M2)S31

}
,

where Sab are SO(10) singlets. This superpotential admits a so-
lution where all three �ab’s and �̄ab’s have equal VEVs along
their respective Standard Model singlet directions. Higher di-
mensional operators of the form (��̄)2/M∗ will have to be
introduced to give masses to all pseudo-Goldstone bosons from
these fields. We assume that the mass scale M∗ in this expan-
sion is slightly above the GUT scale, say by a factor of 3–5,
which would make the expansion trustable. In this case the
pseudo-Goldstone bosons will acquire masses of order a few
times below the GUT scale from these non-renormalizable cou-
plings. Since these particles are not much below the GUT scale
their effects on the gauge coupling evolution are likely to be
small. In particular, the gauge couplings will still stay perturba-
tive at the GUT scale and will remain so upto the scale M∗.

An interesting feature of this VEV structure is that from
Eq. (1), it will generate a Majorana right-handed neutrino mass
matrix which has equal entries in the off-diagonals, and zero
entries along the diagonals (as in M3 of Eq. (7)). That will
result in two degenerate νc fields, which may be relevant for
resonant leptogenesis. Higher dimensional operators can split
the exact degeneracy of the two νc fields. It will be nec-
essary to assume that the S2 interchange symmetry between
the first two families (a subgroup of the original S3) is bro-
ken by such higher dimensional operators in order to split
the masses of the first two family quarks and leptons. Us-
ing the same assumption for the νc fields, we find that op-
erators such as (ψ1ψ1�̄12�̄13�23/M

2∗ ) will split the near–
degenerate νc masses by an amount (MG/M∗)2 which gives
roughly (�M/M) ∼ 10−3, in the right range for resonant lep-
togenesis.

There are only two renormalizable terms allowed in WΩ� by
symmetry, namely (�ab�abΩab + cyclic) and (�̄ab�̄abΩab +
cyclic). These terms give sufficient coupling between the bifun-
damental Higgs sector and the bispinor Higgs sector to prevent
any uneaten Goldstone bosons. (With insufficient coupling be-
tween two kinds of Higgs, Goldstone bosons can arise that
correspond to relative rotations of their VEVs.) It is in this re-
gard that the present model fares better than the usual SO(10)

models, where new mechanisms should come in to stabilize the
VEV structure [11].
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Turning to higher dimension operators, one finds that there
are only a few quartic operators allowed by the SO(10)3 × S3
symmetry in the Higgs superpotential. Some of these (such
as (H 2

a Ω2
bc + cyclic)) can be constructed by multiplying pairs

of the invariant quadratic operators H 2
a , Ω2

ab , and �ab�̄ab

(or by taking such products and contracting the gauge in-
dices differently). In addition, there are the following five types
of invariant quartic operators: O1 ≡ (HaHbΩcaΩcb + cyclic);
O2 ≡ (HaHb�

2
ab + cyclic) and Ō2 ≡ (HaHb�̄

2
ab + cyclic);

O3 ≡ (ΩabΩac�
2
bc + cyclic) and Ō3 ≡ (ΩabΩac�̄

2
bc + cyclic);

O4 ≡ (�4
ab + cyclic) and Ō4 ≡ (�̄4

ab + cyclic); and O5 ≡
(�ab�bc�̄caHb + cyclic) and Ō5 ≡ (�̄ab�̄bc�caHb + cyclic).
The operators of type O1, O3, and Ō3 can exist with the prod-
uct of bifundamentals being ΩΩ , ΩΩ ′, or Ω ′Ω ′, as far as the
symmetry SO(10)3 ×S3 is concerned; which of these is actually
allowed in the superpotential depends on the Z2 parity assign-
ments of the fields.

There are only two types of quartic operators allowed by
SO(10)3 × S3 in the Yukawa superpotential, namely OY1 ≡
(ψaψaHbΩab + cyclic), OY2 ≡ (ψaψbΩab�ab + cyclic).
Again, in both cases SO(10)3 × S3 permits such operators with
either Ω or Ω ′, whereas some will not be allowed by Z2 parity.

These quartic operators, which may be induced either
by Planck-scale physics or by integrating out fields at the
unification scale, have interesting consequences. Consider
first the operator O5, which written out is �12�23�̄31H2 +
�23�31�̄12H3 + �31�12�̄23H1. The second term, which in-
volves H3, is interesting because it induces weak-scale SU(2)L-
breaking VEVs in both �23 and �31.

This happens as follows. If we write out this term in SO(10)3

notation, it has the form �23�31�̄12H3 = (1,16,16)(16,1,16)

(16,16,1)(1,1,10). Using [SU(5) × U(1)]3 notation [12], the
first factor (�23) has a superlarge VEV in the (10,15,15)

direction, the second factor (�31) has a superlarge VEV in
the (15,10,15) direction, the third factor (�̄12) has a su-
perlarge VEV in the (1−5,1−5,10) direction, and the last
factor (H3) has a weak-scale VEV in the (10,10,5−2) di-
rection. Therefore, there is effectively a linear term for the
(10,15, 5̄−3) component of �23 that arises from this prod-
uct: (10,15, 5̄−3) · 〈(15,10,15)〉〈(1−5,1−5,10)〉〈(10,10,5−2)〉.
It is easy to see that this will induce a weak-scale VEV in
this component. So we may write 〈�23(10,15, 5̄−3)〉 ∼ MW .
Similarly there is a linear term for the (15,10, 5̄−3) com-
ponent of the �31 coming from the product 〈(10,15,15)〉 ·
(15,10, 5̄−3) · 〈(1−5,1−5,10)〉〈(10,10,5−2)〉. So we may write
〈�31(15,10, 5̄−3)〉 ∼ MW .

These weak-scale VEVs in �23 and �31 are interest-
ing, in turn, because they can contribute to quark and lep-
ton masses if the operator OY2 is present (in either its Ω

or its Ω ′ form). If one examines the term ψ2ψ3Ω
′
23�23 =

(1,16,1)(1,1,16)(1,10,10)(1,16,16), ones sees that it con-
tains (10, 5̄−3,10) (10,10,101)〈(10,5−2, 5̄2)〉〈(10,15, 5̄−3)〉.
In SU(5) language, this is a contribution to a term of the form
5̄2103〈5̄H 〉, i.e., the 10 of the third family times the 5̄ of the
second family. Therefore this operator gives a 23 element of
the charged-lepton mass matrix ML and a 32 element of the
down-quark mass matrix MD . It does not contribute to any
other components of these matrices, and it does not contribute
to the up-quark mass matrix. This is exactly the kind of entry
that is needed in the so-called “lopsided” mass matrix mod-
els [13]. If such entries are comparable to the 33 elements of
MD and ML, then they explain the fact that the 2–3 mixing an-
gle is large for the left-handed leptons (i.e., Uμ3 ∼ 1) but small
for the left-handed quarks (i.e., Vcb 
 1). If the relevant quar-
tic terms arise from integrating out fields with mass of order
MGUT rather than MP�, there is no reason that these lopsided
mass matrix elements necessarily have to be smaller than the 33
elements, even though the latter arise from cubic terms. (Even
with quartic terms generating the 23 and 13 entries, they may
be comparable to the 33 entry if tanβ is small.) It should be
noted that in most published lopsided models the operator that
gives the lopsided entries (MD)32 and (ML)23 is such that these
entries are equal in magnitude. It is important that they be at
least approximately equal to reproduce the well-known predic-
tion that at the unification scale mb = mτ . Here, the operator
ψ2ψ3Ω

′
23�23 does not make these entries equal but gives them

a ratio (MD)32/(ML)23 = a′/b′, whose value depends on the
parameters in the Higgs superpotential. (See Eq. (5).) (If, in-
stead of Ω ′ in this operator there were Ω , then the contribution
to ML would vanish.)

In the same way, it is easy to see that the weak-scale VEV
of �31 can generate contributions to the 31 element of MD and
the 13 element of ML. If these too are comparable to the mag-
nitudes of the 33 elements, then a so-called “doubly lopsided”
model results [10]. As has been explained in the literature, such
models can account for the so-called “bi-large” pattern of neu-
trino mixing in a very simple way, and have other attractive
features as well.

One might expect the transposes of these lopsided mass ma-
trix elements also to be induced by these quartic terms (e.g., the
23 element of MD in addition to the 32 element, etc.). How-
ever, they are not. Nor are any off-diagonal elements of the
up quark-mass matrices, induced until one takes into account
terms higher-order than quartic. This may well be related to the
stronger mass hierarchy observed among the up-type quarks.
Indeed, in lopsided models, it is precisely the absence of large
lopsided terms in MU that is responsible for this. It is note-
worthy that in the lopsided models published in the literature
the placement of the lopsided entries (for example that they ap-
pear in the 32 elements but not the 12 elements, say) is to some
extent contrived with an eye to reproducing the observed pat-
tern of masses and mixings. Here, it is largely dictated by the
SO(10)3 × Z3 symmetry of the theory (and by the requirement
that only one pair of Higgs doublets remains light).

The operators OY1 can also play an important role. The term
ψ1ψ1H3Ω

′
13 and the term ψ2ψ2H3Ω

′
23 give 11 and 22 elements

respectively to all the quark and lepton mass matrices. Note
that the two terms ψ1ψ1H3Ω

′
13 and ψ2ψ2H3Ω

′
23 are related

to each other by S3. However, if S3 is broken spontaneously, ei-
ther completely or down to a Z3 subgroup, the equality of the
11 and 22 elements need not hold.

The following shows at what level various elements in the
quark and lepton mass matrices arise. A “3” means that such an
element can arise even if only terms cubic and lower exist in W ;
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a “4” means that such an element can arise only if quartic (or
higher) terms are present, and a “5” means that such an element
can arise only if quintic (or higher) terms are present.

MU =
(4 5 5

5 4 5
5 5 3

)
, MD =

(4 5 5
5 4 5
4 4 3

)
,

(9)ML =
(4 5 4

5 4 4
5 5 3

)
.

The entries that are labelled “5” arise in a somewhat non-
trivial way. Consider, for instance, the 12 and 21 elements of the
mass matrices. The quintic term �12�13�̄23Ω13H3 induces a
weak-scale VEV in the component �12(5̄−3,15,10) through
the product (5̄−3,15,10) · 〈(15,10,15)〉〈(10,1−51−5)〉〈(5−2,

10, 5̄2)〉〈(10,10,5−2)〉. This VEV then gives (MD)12 and
(ML)21 via the quartic Yukawa operator ψ1ψ2Ω12�12 as fol-
lows: (101,10,10)(10, 5̄−3,10)〈(5̄2,5−2,10)〉〈(5̄−3,15,10)〉.
The transposed elements (MD)21 and (ML)12 arise in a com-
pletely analogous way. (Just interchange the labels 1 and 2
everywhere in the preceding discussion.) The 12 and 21 ele-
ments of the up quark mass matrix MU can come from a quintic
Yukawa operator ψ1ψ2Ω12Ω12�̄12 from the term (101,10,

10)(10,101,10)〈(5−2, 5̄2,10)〉〈(5−2, 5̄2,10)〉〈(53,1−5,10)〉.
The same quintic term �12�13�̄23Ω13H3, induces a weak-

scale VEV for �13(5̄−3,10,15) through the product
〈(15,15,10)〉·(5̄−3,10,15)·〈(10,1−5,1−5)〉〈(5−2,10, 5̄2)〉〈(10,

10,5−2)〉. This VEV then induces (MD)13 and (ML)31 through
the quartic term that was mentioned before as giving (MD)31
and (ML)13, namely ψ1ψ3Ω

′
13�13. In particular, this con-

tains the product (101,10,10)(10,10, 5̄−3)〈(5̄2,10,5−2)〉〈(5̄−3,

10,15)〉. The entries (MD)23 and (ML)32 arise in a similar way.
(Just interchange the indices 1 and 2 in the foregoing discus-
sion.)

What remains is to show that the 13, 31, 23, and 32 elements
of MU can arise from quintic terms. The elements (MU)13
and (MU)31 arise from the quintic term ψ1ψ3Ω13Ω13�̄13,
which contains the product (101,10,10)(10,10,101)〈(5̄2,10,

5−2)〉〈(5̄2,10,5−2)〉〈(1−5,10,53)〉. The elements (MU)12 and
(MU)21 arise in a similar way.

One sees, then, that the requirements of SO(10)3 × S3 sym-
metry imply that the quark and lepton mass matrices have a
non-trivial structure that contains several promising features: (i)
a hierarchy among the mass matrix elements, (ii) only one fam-
ily obtaining mass at lowest order, (iii) a qualitative difference
between the up quark mass matrix and the other mass matrices
(in particular some of the elements of MU arise at higher or-
der than the corresponding elements of MD and ML, which is
perhaps related to the stronger hierarchy observed among the
up-type quarks); (iv) relatively large off-diagonal elements in
the third row of MD and third column of ML, i.e., the “dou-
bly lopsided” pattern that is known to explain in a simple way
the bilarge pattern of neutrino mixing; (v) “Clebsches” in cer-
tain elements of MD and ML that may allow an explanation of
the well-known Georgi–Jarlskog relations. Still, the construc-
tion of a complete model with fully realistic quark and lepton
mass matrices has not been attempted here.

There are several issues that would have to be faced in con-
structing a fully realistic model based on SO(10)3 × S3. The
most difficult would be proton decay via the d = 5 operators
that arise from the exchange of colored Higgsinos. The sim-
ple structure in Eq. (7) leads to no suppression of such decay
amplitudes. It seems likely, however, that with more than two
types of bifundamental Higgs fields adequate suppression may
be achieved. Another issue is the existence of Landau poles
above the unification scale (i.e., the SO(10)3 × S3 scale) due
to the large number of fields in the bispinor and bifundamental
Higgs multiplets. These issues require further study.
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