1,365 research outputs found

    Symmetric duality for a class of nondifferentiable multi-objective fractional variational problems

    Get PDF
    AbstractWe introduce a symmetric dual pair for a class of nondifferentiable multi-objective fractional variational problems. Weak, strong, converse and self duality relations are established under certain invexity assumptions. The paper includes extensions of previous symmetric duality results for multi-objective fractional variational problems obtained by Kim, Lee and Schaible [D.S. Kim, W.J. Lee, S. Schaible, Symmetric duality for invex multiobjective fractional variational problems, J. Math. Anal. Appl. 289 (2004) 505–521] and symmetric duality results for the static case obtained by Yang, Wang and Deng [X.M. Yang, S.Y. Wang, X.T. Deng, Symmetric duality for a class of multiobjective fractional programming problems, J. Math. Anal. Appl. 274 (2002) 279–295] to the dynamic case

    Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs

    Get PDF
    10.1093/nar/gkp857Nucleic Acids Research381215-22

    Learning from past failures: Challenges with monoclonal antibody therapies for COVID-19

    Get PDF
    COVID-19, the disease caused by infection with SARS-CoV-2, requires urgent development of therapeutic interventions. Due to their safety, specificity, and potential for rapid advancement into the clinic, monoclonal antibodies (mAbs) represent a highly promising class of antiviral or anti-inflammatory agents. Herein, by analyzing prior efforts to advance antiviral mAbs for other acute respiratory infections (ARIs), we highlight the challenges faced by mAb-based immunotherapies for COVID-19. We present evidence supporting early intervention immediately following a positive diagnosis via inhaled delivery of mAbs with vibrating mesh nebulizers as a promising approach for the treatment of COVID-19

    Lowest-energy structures of 13-atom binary clusters: Do icosahedral clusters exist in binary liquid alloys?

    Full text link
    Although the existence of 13-atom icosahedral clusters in one-component close-packed undercooled liquids was predicted more than half a century ago by Frank, the existence of such icosahedral clusters is less clear in liquid alloys. We study the lowest-energy structures of 13-atom AxB13-x Lennard-Jones binary clusters using the modified space-fixed genetic algorithm and the artificial Lennard-Jones potential designed by Kob and Andersen. Curiously, the lowest-energy structures are non-icosahedral for almost all compositions. The role played by the icosahedral cluster in a binary glass is questionable.Comment: 10 pages, 3 figure (conference paper of LAM12) to be published in J. Non-Crystalline Solid

    Elementary excitations in one-dimensional spin-orbital models: neutral and charged solitons and their bound states

    Full text link
    We study, both numerically and variationally, the interplay between different types of elementary excitations in the model of a spin chain with anisotropic spin-orbit coupling, in the vicinity of the "dimer line" with an exactly known dimerized ground state. Our variational treatment is found to be in a qualitative agreement with the exact diagonalization results. Soliton pairs are shown to be the lowest excitations only in a very narrow region of the phase diagram near the dimer line, and the phase transitions are always governed by magnon-type excitations which can be viewed as soliton-antisoliton bound states. It is shown that when the anisotropy exceeds certain critical value, a new phase boundary appears. In the doped model on the dimer line, the exact elementary charge excitation is shown to be a hole bound to a soliton. Bound states of those "charged solitons" are studied; exact solutions for N-hole bound states are presented.Comment: 11 pages revtex, 6 figure

    Bispecific binder redirected lentiviral vector enables in vivo engineering of CAR-T cells

    Get PDF
    Background Chimeric antigen receptor (CAR) T cells have shown considerable promise as a personalized cellular immunotherapy against B cell malignancies. However, the complex and lengthy manufacturing processes involved in generating CAR T cell products ex vivo result in substantial production time delays and high costs. Furthermore, ex vivo expansion of T cells promotes cell differentiation that reduces their in vivo replicative capacity and longevity. Methods Here, to overcome these limitations, CAR-T cells are engineered directly in vivo by administering a lentivirus expressing a mutant Sindbis envelope, coupled with a bispecific antibody binder that redirects the virus to CD3 + human T cells. Results This redirected lentiviral system offers exceptional specificity and efficiency; a single dose of the virus delivered to immunodeficient mice engrafted with human peripheral blood mononuclear cells generates CD19-specific CAR-T cells that markedly control the growth of an aggressive pre-established xenograft B cell tumor. Conclusions These findings underscore in vivo engineering of CAR-T cells as a promising approach for personalized cancer immunotherapy

    Aging dynamics in a colloidal glass of Laponite

    Full text link
    The aging dynamics of colloidal suspensions of Laponite, a synthetic clay, is investigated using dynamic light stattering (DLS) and viscometry after a quench into the glassy phase. DLS allows to follow the diffusion of Laponite particles and reveals that there are two modes of relaxation. The fast mode corresponds to a rapid diffusion of particles within "cages" formed by the neighboring particles. The slow mode corresponds to escape from the cages: its average relaxation time increases exponentially fast with the age of the glass. In addition, the slow mode has a broad distribution of relaxation times, its distribution becoming larger as the system ages. Measuring the concomitant increase of viscosity as the system ages, we can relate the slowing down of the particle dynamics to the viscosity.Comment: 9 pages, 8 Postscript figures, submitted to Phys. Rev.

    X-ray standing wave and reflectometric characterization of multilayer structures

    Get PDF
    Microstructural characterization of synthetic periodic multilayers by x-ray standing waves have been presented. It has been shown that the analysis of multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW) techniques can overcome the deficiencies of the individual techniques in microstructural analysis. While interface roughnesses are more accurately determined by the XRR technique, layer composition is more accurately determined by the XSW technique where an element is directly identified by its characteristic emission. These aspects have been explained with an example of a 20 period Pt/C multilayer. The composition of the C-layers due to Pt dissolution in the C-layers, Ptx_{x}C1x_{1-x}, has been determined by the XSW technique. In the XSW analysis when the whole amount of Pt present in the C-layers is assumed to be within the broadened interface, it l eads to larger interface roughness values, inconsistent with those determined by the XRR technique. Constraining the interface roughness values to those determined by the XRR technique, requires an additional amount of dissolved Pt in the C-layers to expl ain the Pt fluorescence yield excited by the standing wave field. This analysis provides the average composition Ptx_{x}C1x_{1-x} of the C-layers .Comment: 12 pages RevTex, 10 eps figures embedde
    corecore