Symmetric duality for a class of nondifferentiable multi-objective fractional variational problems ${ }^{\text {Th }}$

S.K. Mishra ${ }^{\text {a,b,* }}$, S.Y. Wang ${ }^{\text {c }}$, K.K. Lai ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Statistics and Computer Science, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
${ }^{\mathrm{b}}$ City University of Hong Kong, Kowloon, Hong Kong
${ }^{c}$ Institute of Systems Sciences, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 1000800, China
${ }^{\text {d }}$ Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Received 1 February 2006
Available online 16 January 2007
Submitted by G. Chen

Abstract

We introduce a symmetric dual pair for a class of nondifferentiable multi-objective fractional variational problems. Weak, strong, converse and self duality relations are established under certain invexity assumptions. The paper includes extensions of previous symmetric duality results for multi-objective fractional variational problems obtained by Kim, Lee and Schaible [D.S. Kim, W.J. Lee, S. Schaible, Symmetric duality for invex multiobjective fractional variational problems, J. Math. Anal. Appl. 289 (2004) 505-521] and symmetric duality results for the static case obtained by Yang, Wang and Deng [X.M. Yang, S.Y. Wang, X.T. Deng, Symmetric duality for a class of multiobjective fractional programming problems, J. Math. Anal. Appl. 274 (2002) 279-295] to the dynamic case. © 2006 Elsevier Inc. All rights reserved.

Keywords: Nonlinear programming; Symmetric duality; Variational problems; Generalized convexity

[^0]
1. Introduction

The classical dual in linear programming is symmetric in the sense that the dual of the dual is the original linear program. Such symmetry is usually not found in duality concept for nonlinear programming [11], not even in quadratic programming which is symmetric [3,5]. Extending these results to general convex programming, Dantzig et al. [4] formulated a symmetric dual pair and established weak and strong duality relations for the problem. Mond and Weir [19] established symmetric duality results under generalized convexity for a new type of dual pair. Weir and Mond [27] introduced two distinct symmetric duals for multi-objective programs. Under additional assumptions the multi-objective programs are shown to be self-dual.

Mond and Hanson [16] first extended the symmetric duality results of [15] to variational problems by introducing continuous analogues of the earlier concepts. Smart and Mond [25] extended symmetric duality results to variational problems by employing a continuous version of invexity introduced by Hanson [6], see also [7-9,14,20,21].

Mond and Schechter [18] studied nondifferentiable symmetric duality in which the objective function contains a support function. Following Mond and Schechter [18], Yang et al. [29] presented a pair of symmetric dual nonlinear fractional programming problems and established duality theorems under pseudo-convexity/pseudo-concavity assumptions on the kernel function. Later, Yang et al. [28] formulated a pair of nondifferentiable multi-objective fractional programming problems and proved duality theorems under a generalized invexity assumption. The results obtained by Yang et al. [28,29] include, as a special case duality results for multi-objective programs given by Weir and Mond [27] and for single objective fractional programs discussed by Chandra et al. [1], Mond et al. [17] as well as Mond and Schechter [18].

It is well known due to the works of Schaible [22-24] that duality results for convex programming do not apply to fractional programs in general. Duality concepts for such programs had to be defined separately [12,13,22-24,26,28,29]. Most duals in fractional programming are not symmetric [12,13,22-24,26,28,29]. For the multi-objective case of a static nonlinear fractional program symmetric duality was introduced by Weir [26] as an extension of an earlier work of Weir and Mond [27]. Weir [26] also established weak and strong duality results under convexity assumptions.

Very recently, Kim et al. [10] introduced a symmetric dual for multi-objective fractional variational problems which is different from the one proposed by Chen [2]. Kim et al. [10] established weak, strong, converse and self-duality theorems under invexity assumptions.

In this paper, we focus on symmetric duality for a class of nondifferentiable fractional variational problems. We introduced a symmetric dual pair for a class of nondifferentiable multiobjective fractional variational problems. We establish weak, strong, converse and self duality theorems under certain invexity assumptions. The results obtained in this paper extend the very recent results established by Kim et al. [10] to the nondifferentiable case and also extend an earlier work of Yang et al. [28] to the dynamic case. Moreover, these results also include, as special cases, the symmetric duality results of Yang et al. [29], Mond and Schechter [18], Weir and Mond [27] and others.

2. Notations and definitions

For $x, y \in R^{n}$, by $x \leqq y$ we mean $x_{i} \leqq y_{i}$ for all $i, x \leqslant y$ means $x_{i} \leqq y_{i}$ for all i and $x_{j}<y_{j}$ for at least one $j, 1 \leqq j \leqq n$. By $x<y$ we mean $x_{i}<y_{i}$ for all i and by $x \nless y$ we mean the negation of $x \leqslant y$.

Let $I=[a, b]$ be a real interval, $f: I \times R^{n} \times R^{n} \times R^{m} \times R^{m} \rightarrow R^{k}$ and $g: I \times R^{n} \times R^{n} \times$ $R^{m} \times R^{m} \rightarrow R^{k}$. Consider the vector-valued function $f(t, x, \dot{x}, y, \dot{y})$, where $t \in I, x$ and y are functions of t with $x(t) \in R^{n}$ and $y(t) \in R^{m}$ and \dot{x} and \dot{y} denote the derivatives of x and y, respectively, with respect to t.

Assume that f has continuous fourth-order partial derivatives with respect to x, \dot{x}, y and \dot{y}. Let f_{x} and $f_{\dot{x}}$ denote the $k \times n$ matrices of first-order partial derivatives with respect to x and \dot{x}; i.e.,

$$
f_{i x}=\left(\frac{\partial f_{i}}{\partial x_{1}}, \ldots, \frac{\partial f_{i}}{\partial x_{n}},\right) \quad \text { and } \quad f_{i \dot{x}}=\left(\frac{\partial f_{i}}{\partial \dot{x}_{1}}, \ldots, \frac{\partial f_{i}}{\partial \dot{x}_{n}},\right), \quad i=1,2, \ldots, k
$$

Similarly, f_{y} and $f_{\dot{y}}$ denote the $k \times m$ matrices of first-order partial derivatives with respect to y and \dot{y}.

For a multi-objective fractional variational problem:

$$
\begin{aligned}
\text { (FVP) Minimize } & \frac{\int_{a}^{b} f(t, x(t), \dot{x}(t)) d t}{\int_{a}^{b} g(t, x(t), \dot{x}(t)) d t} \\
& =\left(\frac{\int_{a}^{b} f_{1}(t, x(t), \dot{x}(t)) d t}{\int_{a}^{b} g_{1}(t, x(t), \dot{x}(t)) d t}, \ldots, \frac{\int_{a}^{b} f_{k}(t, x(t), \dot{x}(t)) d t}{\int_{a}^{b} g_{k}(t, x(t), \dot{x}(t)) d t}\right) \\
\text { subject to } & x(a)=\alpha, \quad x(b)=\beta, \\
& h(t, x(t), \dot{x}(t)) \leqq 0
\end{aligned}
$$

$$
\text { where } h: I \times R^{n} \times R^{n} \rightarrow R^{l}
$$

Assume that $g_{i}(t, x, \dot{x})>0$ and $f_{i}(t, x, \dot{x}) \geqq 0$ for all $i=1,2, \ldots, k$. Let X denote the set of all feasible solutions of (FVP).

Definition 2.1. A point $x^{*} \in X$ is said to be an efficient (Pareto optimal) solution of (FVP) if for all $x \in X$,

$$
\frac{\int_{a}^{b} f(t, x, \dot{x}) d t}{\int_{a}^{b} g(t, x, \dot{x}) d t} \nless \frac{\int_{a}^{b} f\left(t, x^{*}, \dot{x}^{*}\right) d t}{\int_{a}^{b} g\left(t, x^{*}, \dot{x}^{*}\right) d t} .
$$

Definition 2.2. A point $x^{*} \in X$ is said to be a properly efficient solution of (FVP) if it is efficient for (FVP) and if there exists a scalar $M>0$ such that, for all $i \in\{1,2, \ldots, k\}$,

$$
\frac{\int_{a}^{b} f_{i}\left(t, x^{*}, \dot{x}^{*}\right) d t}{\int_{a}^{b} g_{i}\left(t, x^{*}, \dot{x}^{*}\right) d t}-\frac{\int_{a}^{b} f_{i}(t, x, \dot{x}) d t}{\int_{a}^{b} g_{i}(t, x, \dot{x}) d t} \leqq M\left(\frac{\int_{a}^{b} f_{j}(t, x, \dot{x}) d t}{\int_{a}^{b} g_{j}(t, x, \dot{x}) d t}-\frac{\int_{a}^{b} f_{j}\left(t, x^{*}, \dot{x}^{*}\right) d t}{\int_{a}^{b} g_{j}\left(t, x^{*}, \dot{x}^{*}\right) d t}\right)
$$

for some j, such that

$$
\frac{\int_{a}^{b} f_{j}(t, x, \dot{x}) d t}{\int_{a}^{b} g_{j}(t, x, \dot{x}) d t}>\frac{\int_{a}^{b} f_{j}\left(t, x^{*}, \dot{x}^{*}\right) d t}{\int_{a}^{b} g_{j}\left(t, x^{*}, \dot{x}^{*}\right) d t}
$$

whenever $x \in X$, and

$$
\frac{\int_{a}^{b} f_{i}(t, x, \dot{x}) d t}{\int_{a}^{b} g_{i}(t, x, \dot{x}) d t}<\frac{\int_{a}^{b} f_{i}\left(t, x^{*}, \dot{x}^{*}\right) d t}{\int_{a}^{b} g_{i}\left(t, x^{*}, \dot{x}^{*}\right) d t}
$$

Definition 2.3. A point $x^{*} \in X$ is said to be a weakly efficient solution of (FVP) if there exists no other feasible point x for which

$$
\frac{\int_{a}^{b} f\left(t, x^{*}, \dot{x}^{*}\right) d t}{\int_{a}^{b} g\left(t, x^{*}, \dot{x}^{*}\right) d t}>\frac{\int_{a}^{b} f(t, x, \dot{x}) d t}{\int_{a}^{b} g(t, x, \dot{x}) d t}
$$

Now we recall the invexity for continuous case as follows:
Definition 2.4. The vector of functionals $\int_{a}^{b} f=\left(\int_{a}^{b} f_{1}, \ldots, \int_{a}^{b} f_{k}\right)$ is said to be invex in x and \dot{x} if for each $y:[a, b] \rightarrow R^{m}$, with \dot{y} piecewise smooth, there exists a function $\eta:[a, b] \times R^{n} \times$ $R^{n} \times R^{n} \times R^{n} \rightarrow R^{n}$ such that $\forall i=1,2, \ldots, k$,

$$
\begin{aligned}
& \int_{a}^{b}\left\{f_{i}(t, x, \dot{x}, y, \dot{y})-f_{i}(t, u, \dot{u}, y, \dot{y})\right\} d t \\
& \quad \geqq \int_{a}^{b} \eta(t, x, \dot{x}, u, \dot{u})^{T}\left[f_{i}(t, u, \dot{u}, y, \dot{y})-\frac{d}{d t} f_{i \dot{x}}(t, u, \dot{u}, y, \dot{y})\right] d t
\end{aligned}
$$

for all $x:[a, b] \rightarrow R^{n}, u:[a, b] \rightarrow R^{n}$, where $(\dot{x}(t), \dot{u}(t))$ is piecewise smooth on $[a, b]$.
Definition 2.5. The vector of functionals $-\int_{a}^{b} f$ is said to be invex in y and \dot{y} if for each $x:[a, b] \rightarrow R^{n}$, with \dot{x} piecewise smooth, there exists a function $\xi:[a, b] \times R^{m} \times R^{m} \times R^{m} \times$ $R^{m} \rightarrow R^{m}$ such that $\forall i=1,2, \ldots, k$,

$$
\begin{aligned}
& -\int_{a}^{b}\left\{f_{i}(t, x, \dot{x}, v, \dot{v})-f_{i}(t, x, \dot{x}, y, \dot{y})\right\} d t \\
& \quad \geqq-\int_{a}^{b} \xi(t, v, \dot{v}, y, \dot{y})^{T}\left[f_{i y}(t, x, \dot{x}, y, \dot{y})-\frac{d}{d t} f_{i \dot{y}}(t, x, \dot{x}, y, \dot{y})\right] d t
\end{aligned}
$$

for all $v:[a, b] \rightarrow R^{m}, y:[a, b] \rightarrow R^{m}$, where $(\dot{v}(t), \dot{y}(t))$ is piecewise smooth on $[a, b]$.
Definition 2.6. The vector of functionals $\int_{a}^{b} f=\left(\int_{a}^{b} f_{1}, \ldots, \int_{a}^{b} f_{k}\right)$ is said to be p seudo invex in x and \dot{x} if for each $y:[a, b] \rightarrow R^{m}$, with \dot{y} piecewise smooth, there exists a function $\eta:[a, b] \times$ $R^{n} \times R^{n} \times R^{n} \times R^{n} \rightarrow R^{n}$ such that $\forall i=1,2, \ldots, k$,

$$
\begin{aligned}
& \int_{a}^{b} \eta(t, x, \dot{x}, u, \dot{u})^{T}\left[f_{i}(t, u, \dot{u}, y, \dot{y})-\frac{d}{d t} f_{i \dot{x}}(t, u, \dot{u}, y, \dot{y})\right] d t \geqq 0 \\
& \quad \Rightarrow \quad \int_{a}^{b}\left\{f_{i}(t, x, \dot{x}, y, \dot{y})-f_{i}(t, u, \dot{u}, y, \dot{y})\right\} d t \geqq 0
\end{aligned}
$$

for all $x:[a, b] \rightarrow R^{n}, u:[a, b] \rightarrow R^{n}$, where $(\dot{x}(t), \dot{u}(t))$ is piecewise smooth on $[a, b]$.

Definition 2.7. The vector of functionals $-\int_{a}^{b} f$ is said to be pseudo invex in y and \dot{y} if for each $x:[a, b] \rightarrow R^{n}$, with \dot{x} piecewise smooth, there exists a function $\xi:[a, b] \times R^{m} \times R^{m} \times R^{m} \times$ $R^{m} \rightarrow R^{m}$ such that $\forall i=1,2, \ldots, k$,

$$
\begin{aligned}
& -\int_{a}^{b} \xi(t, v, \dot{v}, y, \dot{y})^{T}\left[f_{i y}(t, x, \dot{x}, y, \dot{y})-\frac{d}{d t} f_{i \dot{y}}(t, x, \dot{x}, y, \dot{y})\right] d t \geqq 0 \\
& \quad \Rightarrow \quad-\int_{a}^{b}\left\{f_{i}(t, x, \dot{x}, v, \dot{v})-f_{i}(t, x, \dot{x}, y, \dot{y})\right\} d t \geqq 0
\end{aligned}
$$

for all $v:[a, b] \rightarrow R^{m}, y:[a, b] \rightarrow R^{m}$, where $(\dot{v}(t), \dot{y}(t))$ is piecewise smooth on $[a, b]$.

In the sequel, we will write $\eta(x, u)$ for $\eta(t, x, \dot{x}, u, \dot{u})$ and $\xi(v, y)$ for $\xi(t, v, \dot{v}, y, \dot{y})$.
We consider the problem of finding functions $x:[a, b] \rightarrow R^{n}$ and $y:[a, b] \rightarrow R^{m}$, where $(\dot{x}(t), \dot{y}(t))$ is piecewise smooth on $[a, b]$, to solve the following pair o symmetric dual multiobjective nondifferentiable fractional variational problems introduced as follows:

$$
\begin{aligned}
& \text { (MNFP) Min } \frac{\int_{a}^{b}\left\{f(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+s(x(t) \mid C)-y(t)^{T} z\right\} d t}{\int_{a}^{b}\left\{g(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-s(x(t) \mid E)+y(t)^{T} r\right\} d t} \\
& =\left(\frac{\int_{a}^{b}\left\{f_{1}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+s\left(x(t) \mid C_{1}\right)-y(t)^{T} z_{1}\right\} d t}{\int_{a}^{b}\left\{g_{1}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-s\left(x(t) \mid E_{1}\right)+y(t)^{T} r_{1}\right\} d t}, \ldots\right. \\
& \left.\frac{\int_{a}^{b}\left\{f_{k}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+s\left(x(t) \mid C_{k}\right)-y(t)^{T} z_{k}\right\} d t}{\int_{a}^{b}\left\{g_{k}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-s\left(x(t) \mid E_{k}\right)+y(t)^{T} r_{k}\right\} d t}\right) \\
& \text { subject to } \quad x(a)=0=x(b), \quad y(a)=0=y(b), \\
& \dot{x}(a)=0=\dot{x}(b), \quad \dot{y}(a)=0=\dot{y}(b), \\
& \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i y}-D f_{i \dot{y}}-z_{i}\right] G_{i}(x, y)\right. \\
& \left.-\left[g_{i y}-D g_{i \dot{y}}+r_{i}\right] F_{i}(x, y)\right\} \leqq 0, \\
& \int_{a}^{b} y(t)^{T} \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i y}-D f_{i \dot{y}}-z_{i}\right] G_{i}(x, y)\right. \\
& \left.-\left[g_{i y}-D g_{i \dot{y}}+r_{i}\right] F_{i}(x, y)\right\} d t \geqq 0, \\
& \tau>0, \quad \tau^{T} e=1, \quad t \in I, \\
& z_{i} \in D_{i}, \quad r_{\mathrm{i}} \in H_{i}, \quad i=1,2, \ldots, k . \\
& \text { (MNFD) Max } \frac{\int_{a}^{b}\left\{f(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-s(v(t) \mid D)+u(t)^{T} w\right\} d t}{\int_{a}^{b}\left\{g(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+s(v(t) \mid H)-u(t)^{T} s\right\} d t} \\
& =\left(\frac{\int_{a}^{b}\left\{f_{1}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-s\left(v(t) \mid D_{1}\right)+u(t)^{T} w_{1}\right\} d t}{\int_{a}^{b}\left\{g_{1}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+s\left(v(t) \mid H_{1}\right)-u(t)^{T} s_{1}\right\} d t}, \ldots\right.
\end{aligned}
$$

$$
\begin{gathered}
\left.\frac{\int_{a}^{b}\left\{f_{k}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-s\left(v(t) \mid D_{k}\right)+u(t)^{T} w_{k}\right\} d t}{\int_{a}^{b}\left\{g_{k}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+s\left(v(t) \mid H_{k}\right)-u(t)^{T} s_{k}\right\} d t}\right) \\
\text { subject to } \quad u(a)=0=u(b), \quad v(a)=0=v(b), \\
\dot{u}(a)=0=\dot{u}(b), \quad \dot{v}(a)=0=\dot{v}(b), \\
\sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i u}-D f_{i \dot{u}}+w_{i}\right] G_{i}^{*}(u, v)\right. \\
\left.\quad-\left[g_{i u}-D g_{i \dot{u}}-s_{i}\right] F_{i}^{*}(u, v)\right\} \geqq 0, \\
\int_{a}^{b} u(t)^{T} \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i u}-D f_{i \dot{u}}+w_{i}\right] G_{i}^{*}(u, v)\right. \\
\left.\quad-\left[g_{i u}-D g_{i \dot{u}}-s_{i}\right] F_{i}^{*}(u, v)\right\} \leqq 0, \\
\tau>0, \quad \tau^{T} e=1, \quad t \in I, \\
w_{i} \in C_{i}, \quad s_{i} \in E_{i}, \quad i=1,2, \ldots, k,
\end{gathered}
$$

where $f_{i}: I \times R^{n} \times R^{n} \times R^{m} \times R^{m} \rightarrow R_{+}$and $g_{i}: I \times R^{n} \times R^{n} \times R^{m} \times R^{m} \rightarrow R_{+} \backslash\{0\}$ are continuously differentiable functions and

$$
\begin{aligned}
& F_{i}(x, y)=\int_{a}^{b}\left\{f_{i}(t, x, \dot{x}, y, \dot{y})+s\left(x(t) \mid C_{i}\right)-y(t)^{T} z_{i}\right\} d t ; \\
& G_{i}(x, y)=\int_{a}^{b}\left\{g_{i}(t, x, \dot{x}, y, \dot{y})-s\left(x(t) \mid E_{i}\right)+y(t)^{T} r_{i}\right\} d t ; \\
& F_{i}^{*}(u, v)=\int_{a}^{b}\left\{f_{i}(t, u, \dot{u}, v, \dot{v})-s\left(v(t) \mid D_{i}\right)+u(t)^{T} w_{i}\right\} d t ;
\end{aligned}
$$

and

$$
G_{i}^{*}(u, v)=\int_{a}^{b}\left\{g_{i}(t, u, \dot{u}, v, \dot{v})+s\left(v(t) \mid H_{i}\right)-u(t)^{T} s_{i}\right\} d t .
$$

In the above problems (MNFP) and (MNFD), the numerators are nonnegative and denominators are positive; the differential operator D is given by

$$
y=D x \quad \Leftrightarrow \quad x(t)=\alpha+\int_{a}^{t} y(s) d s
$$

and $x(a)=\alpha, x(b)=\beta$ are given boundary values; thus $D=d / d t$ except at discontinuities. Let $f_{x}=f_{x}(t, x(t), \dot{x}(t), y(t), \dot{y}(t)), f_{\dot{x}}=f_{\dot{x}}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))$, etc.

All the above statements for F_{i}, G_{i}, F_{i}^{*} and G_{i}^{*} will be assumed to hold for subsequent results. It is to be noted that

$$
D f_{i \dot{y}}=f_{i \dot{y} t}+f_{i \dot{y} y} \dot{y}+f_{i \dot{y} \dot{y}} \ddot{y}+f_{i \dot{y} x} \dot{x}+f_{i \dot{y} \dot{x}} \ddot{x}
$$

and consequently

$$
\begin{array}{llll}
\frac{\partial}{\partial y} D f_{i \dot{y}}=D f_{i \dot{y} y}, & \frac{\partial}{\partial \dot{y}} D f_{i \dot{y}}=D f_{i \dot{y} \dot{y}}+f_{i \dot{y} y}, & \frac{\partial}{\partial \ddot{y}} D f_{i \dot{y}}=f_{i \dot{y} \dot{y}}, \\
\frac{\partial}{\partial x} D f_{i \dot{y}}=D f_{i \dot{y} x}, & \frac{\partial}{\partial \dot{x}} D f_{i \dot{y}}=D f_{i \dot{y} \dot{x}}+f_{i \dot{y} x}, & \frac{\partial}{\partial \ddot{x}} D f_{i \dot{y}}=f_{i \dot{y} \dot{x}} .
\end{array}
$$

In order to simplify the notations we introduce

$$
p_{i}=\frac{F_{i}(x, y)}{G_{i}(x, y)}=\frac{\int_{a}^{b}\left\{f_{i}(t, x, \dot{x}, y, \dot{y})+s\left(x(t) \mid C_{i}\right)-y(t)^{T} z_{i}\right\} d t}{\int_{a}^{b}\left\{g_{i}(t, x, \dot{x}, y, \dot{y})-s\left(x(t) \mid E_{i}\right)+y(t)^{T} r_{i}\right\} d t}
$$

and

$$
q_{i}=\frac{F_{i}^{*}(u, v)}{G_{i}^{*}(u, v)}=\frac{\int_{a}^{b}\left\{f_{i}(t, u, \dot{u}, v, \dot{v})-s\left(v(t) \mid D_{i}\right)+u(t)^{T} w_{i}\right\} d t}{\int_{a}^{b}\left\{g_{i}(t, u, \dot{u}, v, \dot{v})+s\left(v(t) \mid H_{i}\right)-u(t)^{T} s_{i}\right\} d t}
$$

and express problems (MNFP) and (MNFD) equivalently as follows:
(EMSP) Min $p=\left(p_{1}, \ldots, p_{k}\right)^{T}$

$$
\begin{align*}
& \text { subject to } \quad \begin{array}{l}
x(a)=0=x(b), \quad y(a)=0=y(b), \\
\dot{x}(a)=0=\dot{x}(b), \quad \dot{y}(a)=0=\dot{y}(b), \\
\int_{a}^{b}\left\{f_{i}(t, x, \dot{x}, y, \dot{y})+s\left(x \mid C_{i}\right)-y^{T} z_{i}\right\} d t \\
\quad-p_{i} \int_{a}^{b}\left\{g_{i}(t, x, \dot{x}, y, \dot{y})-s\left(x \mid E_{i}\right)+y^{T} r_{i}\right\} d t=0
\end{array}, \$ \text {, } \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i y}-D f_{i \dot{y}}-z_{i}\right]-p_{i}\left[g_{i y}-D g_{i \dot{y}}+r_{i}\right]\right\} \leqq 0, \quad t \in I, \tag{4}
\end{equation*}
$$

$$
\int_{a}^{b} y(t)^{T} \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i y}-D f_{i \dot{y}}-z_{i}\right]-p_{i}\left[g_{i y}-D g_{i \dot{y}}+r_{i}\right]\right\} \geqq 0
$$

$$
\begin{equation*}
t \in I \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\tau>0, \quad \tau^{T} e=1, \quad t \in I \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
z_{i} \in D_{i}, \quad r_{\mathrm{i}} \in H_{i}, \quad i=1,2, \ldots, k \tag{7}
\end{equation*}
$$

$(\mathrm{EMSD}) \quad$ Max $\quad q=\left(q_{1}, \ldots, q_{k}\right)^{T}$

$$
\begin{align*}
& \text { subject to } \begin{array}{l}
u(a)=0=u(b), \quad v(a)=0=v(b), \\
\dot{u}(a)=0=\dot{u}(b), \quad \dot{v}(a)=0=\dot{v}(b), \\
\int_{a}^{b}\left\{f_{i}(t, u, \dot{u}, v, \dot{v})-s\left(v \mid D_{i}\right)+u^{T} w_{i}\right\} d t
\end{array}, \$ \text {, } \tag{8}
\end{align*}
$$

$$
\begin{align*}
& \quad-q_{i} \int_{a}^{b}\left\{g_{i}(t, u, \dot{u}, v, \dot{v})+s\left(v \mid H_{i}\right)-u^{T} s_{i}\right\} d t=0 \tag{10}\\
& \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i u}-D f_{i \dot{u}}+w_{i}\right]-q_{i}\left[g_{i u}-D g_{i \dot{u}}-s_{i}\right]\right\} \geqq 0, \quad t \in I, \tag{11}\\
& \int_{a}^{b} u(t)^{T} \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i u}-D f_{i \dot{u}}+w_{i}\right]-q_{i}\left[g_{i u}-D g_{i \dot{u}}-s_{i}\right]\right\} \leqq 0, \\
& \quad t \in I, \tag{12}\\
& \tau>0, \quad \tau^{T} e=1, \quad t \in I, \tag{13}\\
& w_{i} \in C_{i}, \quad s_{\mathrm{i}} \in E_{i}, \quad i=1,2, \ldots, k \tag{14}
\end{align*}
$$

In the above problems (EMSP) and (EMSD), it is to be noted that p and q are also nonnegative.

3. Duality theorems

In this section, we state duality theorems for problems (EMSP) and (EMSD) which lead to corresponding relations between (MNFP) and (MNFD). We establish weak, strong, converse and self duality relations between (EMSP) and (EMSD).

Theorem 3.1 (Weak duality). Let ($\left.x(t), y(t), p, \tau, z_{1}, z_{2}, \ldots, z_{k}, r_{1}, r_{2}, \ldots, r_{k}\right)$ be feasible for (EMSP) and let ($u(t), v(t), q, \tau, w_{1}, w_{2}, \ldots, w_{k}, s_{1}, s_{2}, \ldots, s_{k}$) be feasible for (EMSD). Assume that $\int_{a}^{b}\left(f_{i}+{ }^{T} w_{i}\right) d t$ and $-\int_{a}^{b}\left(g_{i}-{ }^{T} s_{i}\right) d t$ are invex in x and \dot{x} with respect to $\eta(x, u)$, and $-\int_{a}^{b}\left(f_{i}-{ }^{T} z_{i}\right) d t$ and $\int_{a}^{b}\left(g_{i}+{ }^{T} r_{i}\right) d t$ are invex in y and \dot{y}, with respect to $\xi(v, y)$, and $\eta(x, u)+u(t) \geqq 0$ and $\xi(v, y)+y(t) \geqq 0, \forall t \in I$, except possibly at corners of $(\dot{x}(t), \dot{y}(t))$ or ($\dot{u}(t), \dot{v}(t))$. Then one has $p \nless q$.

Proof. Since $\int_{a}^{b}\left(f_{i}+{ }^{T} w_{i}\right) d t$ and $-\int_{a}^{b}\left(g_{i}-\cdot^{T} s_{i}\right) d t$ are invex in x and \dot{x} with respect to $\eta(x, u)$, we have

$$
\begin{aligned}
\int_{a}^{b}[& {[} \\
& \left.f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+x^{T} w_{i}\right\} \\
& \left.\quad-q_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-x^{T} s_{i}\right\}\right] d t \\
\quad & \quad-\int_{a}^{b}\left[\left\{f_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+u^{T} w_{i}\right\}\right. \\
& \left.\quad-q_{i}\left\{g_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-u^{T} s_{i}\right\}\right] d t \\
\geqq & \int_{a}^{b} \eta(x, u)^{T}\left[\left\{f_{i x}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+w_{i}\right\}\right. \\
& \quad-q_{i}\left\{g_{i x}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-s_{i}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-D\left\{f_{i \dot{x}}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+w_{i}\right\}-q_{i}\left\{g_{i \dot{x}}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-s_{i}\right\}\right] d t \\
= & \int_{a}^{b} \eta(x, u)^{T}\left[\left\{\left(f_{i x}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+w_{i}\right)\right.\right. \\
& \left.-D\left(f_{i \dot{x}}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+w_{i}\right)\right\} \\
& \left.-q_{i}\left\{\left(g_{i x}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-s_{i}\right)-D\left(g_{i \dot{x}}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-s_{i}\right)\right\}\right] d t .
\end{aligned}
$$

From (6), (11) and (12) with $\eta(x, u)+u(t) \geqq 0$, we obtain

$$
\begin{align*}
& \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+x^{T} w_{i}\right\}\right. \\
& \left.\quad-q_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-x^{T} s_{i}\right\}\right] d t \\
& \quad \geqq \\
& \quad \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+u^{T} w_{i}\right\}\right. \tag{15}\\
& \left.\quad-q_{i}\left\{g_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-u^{T} s_{i}\right\}\right] d t
\end{align*}
$$

Since $x^{T} s_{i} \leqslant s\left(x \mid E_{i}\right), s_{i} \in E_{i}$, and $x^{T} w_{i} \leqslant s\left(x \mid C_{i}\right), w_{i} \in C_{i}$, (15) can be written as

$$
\begin{align*}
& \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+s\left(x \mid C_{i}\right)\right\}\right. \\
& \left.\quad-q_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-s\left(x \mid E_{i}\right)\right\}\right] d t \\
& \geqq \\
& \geqq \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+u^{T} w_{i}\right\}\right. \tag{16}\\
& \left.\quad-q_{i}\left\{g_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-u^{T} s_{i}\right\}\right] d t
\end{align*}
$$

By the invexity of $-\int_{a}^{b}\left(f_{i}-.^{T} z_{i}\right) d t$ and $\int_{a}^{b}\left(g_{i}+{ }^{T} r_{i}\right) d t$ are invex in y and \dot{y}, with respect to $\xi(v, y)$, for fixed x, we have

$$
\begin{aligned}
\int_{a}^{b}[& \left.\left\{f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-v^{T} z_{i}\right\}-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+v^{T} r_{i}\right\}\right] d t \\
& \quad-\int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-y^{T} z_{i}\right\}\right. \\
& \left.\quad-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+y^{T} r_{i}\right\}\right] d t \\
\leqq & \int_{a}^{b} \xi(v, y)^{T}\left[\left\{\left(f_{i y}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-z_{i}\right)\right.\right. \\
& \left.\quad-D\left(f_{i \dot{y}}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-z_{i}\right)\right\} \\
& \left.\quad-p_{i}\left\{\left(g_{i y}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+r_{i}\right)-D\left(g_{i \dot{y}}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+r_{i}\right)\right\}\right] d t .
\end{aligned}
$$

From (4), (5) and (13) along with $\xi(v, y)+y(t) \geqq 0, \forall t \in I$, we obtain

$$
\begin{align*}
& \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-v^{T} z_{i}\right\}\right. \\
& \left.\quad-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+v^{T} r_{i}\right\}\right] d t \\
& \quad \leqq \\
& \quad \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-y^{T} z_{i}\right\}\right. \tag{17}\\
& \left.\quad-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+y^{T} r_{i}\right\}\right] d t
\end{align*}
$$

Since $v^{T} r_{i} \leqslant s\left(v \mid H_{i}\right), r_{i} \in H_{i}$, and $v^{T} z_{i} \leqslant s\left(v \mid D_{i}\right), z_{i} \in D_{i}$, (17) can be written as

$$
\begin{align*}
& \sum_{i=1}^{k} \tau_{i} \\
& \quad \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-s\left(v \mid D_{i}\right)\right\}\right. \\
&\left.\quad-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+s\left(v \mid H_{i}\right)\right\}\right] d t \\
& \leqq \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-y^{T} z_{i}\right\}\right. \tag{18}\\
&\left.\quad-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+y^{T} r_{i}\right\}\right] d t
\end{align*}
$$

From (16) and (18), we get

$$
\begin{align*}
& \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left(p_{i}-q_{i}\right) g_{i}(t, x, \dot{x}, v, \dot{v}) d t \\
& \quad \geqq \sum_{i=1}^{k} \tau_{i}\left[\int_{a}^{b}\left\{f_{i}(t, u, \dot{u}, v, \dot{v})-s\left(v \mid D_{i}\right)+u^{T} w_{i}\right\} d t\right. \\
& \left.\quad-q_{i} \int_{a}^{b}\left\{g_{i}(t, u, \dot{u}, v, \dot{v})+s\left(v \mid H_{i}\right)-u^{T} s_{i}\right\} d t\right] \\
& \quad-\sum_{i=1}^{k} \tau_{i}\left[\int_{a}^{b}\left\{f_{i}(t, x, \dot{x}, y, \dot{y})+s\left(x \mid C_{i}\right)-y^{T} z_{i}\right\} d t\right. \\
& \left.\quad-p_{i} \int_{a}^{b}\left\{g_{i}(t, x, \dot{x}, y, \dot{y})-s\left(x \mid E_{i}\right)+y^{T} r_{i}\right\} d t\right] \tag{19}
\end{align*}
$$

From (3) and (10), (19) yields

$$
\begin{equation*}
\sum_{i=1}^{k} \tau_{i}\left(p_{i}-q_{i}\right) \int_{a}^{b} g_{i}(t, x, \dot{x}, v, \dot{v}) d t \geqq 0 \tag{20}
\end{equation*}
$$

If for some $i, p_{i}<q_{i}$ and $\forall j \neq i, p_{i} \leqq q_{i}$, then $\int_{a}^{b} g_{i}(t, x, \dot{x}, v, \dot{v}) d t>0, i=1,2, \ldots, k$, implies that

$$
\sum_{i=1}^{k} \tau_{i}\left(p_{i}-q_{i}\right) \int_{a}^{b} g_{i}(t, x, \dot{x}, v, \dot{v}) d t<0
$$

which contradicts (20). Hence $p \nless q$.
Theorem 3.2 (Weak duality). Let ($\left.x(t), y(t), p, \tau, z_{1}, z_{2}, \ldots, z_{k}, r_{1}, r_{2}, \ldots, r_{k}\right)$ be feasible for (EMSP) and let $\left(u(t), v(t), q, \tau, w_{1}, w_{2}, \ldots, w_{k}, s_{1}, s_{2}, \ldots, s_{k}\right)$ be feasible for (EMSD). Assume that $\sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left\{\left(f_{i}+{ }^{T} w_{i}\right)-q_{i}\left(g_{i}-.^{T} s_{i}\right)\right\} d t$ is pseudo-invex in x and \dot{x} with respect to $\eta(x, u)$, and $-\sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left\{\left(f_{i}-.^{T} z_{i}\right)-p_{i}\left(g_{i}+{ }^{T} r_{i}\right)\right\} d t$ is pseudo-invex in y and \dot{y}, with respect to $\xi(v, y)$, with $\eta(x, u)+u(t) \geqq 0$ and $\xi(v, y)+y(t) \geqq 0, \forall t \in I$, except possibly at corners of $(\dot{x}(t), \dot{y}(t))$ or $(\dot{u}(t), \dot{v}(t))$. Then one has $p \nless q$.

Proof. Using the condition $\eta(x, u)+u(t) \geqq 0, \forall t \in I$, and duality constraint (12), we get

$$
\begin{aligned}
& \int_{a}^{b} \eta(x, u)^{T} \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i u}-D f_{i \dot{u}}+w_{i}\right]-q_{i}\left[g_{i u}-D g_{i \dot{u}}-s_{i}\right]\right\} d t \\
& \quad=-\int_{a}^{b} u(t)^{T} \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i u}-D f_{i \dot{u}}+w_{i}\right]-q_{i}\left[g_{i u}-D g_{i \dot{u}}-s_{i}\right]\right\} d t \geqq 0 .
\end{aligned}
$$

Since $\sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left\{\left(f_{i}+{ }^{T} w_{i}\right)-q_{i}\left(g_{i}-{ }^{T} s_{i}\right)\right\} d t$ is pseudo-invex with respect to $\eta(x, u)$, it follows that

$$
\begin{align*}
& \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+x^{T} w_{i}\right\}\right. \\
& \left.\quad-q_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-x^{T} s_{i}\right\}\right] d t \\
& \quad \geqq \\
& \quad \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+u^{T} w_{i}\right\}\right. \tag{21}\\
& \left.\quad-q_{i}\left\{g_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-u^{T} s_{i}\right\}\right] d t
\end{align*}
$$

Since $x^{T} s_{i} \leqslant s\left(x \mid E_{i}\right), s_{i} \in E_{i}$, and $x^{T} w_{i} \leqslant s\left(x \mid C_{i}\right), w_{i} \in C_{i}$, (21) can be written as

$$
\begin{align*}
& \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+s\left(x \mid C_{i}\right)\right\}\right. \\
& \left.\quad-q_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-s\left(x \mid E_{i}\right)\right\}\right] d t \\
& \geqq \\
& \geqq \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+u^{T} w_{i}\right\}\right. \tag{22}\\
& \left.\quad-q_{i}\left\{g_{i}(t, u(t), \dot{u}(t), v(t), \dot{v}(t))-u^{T} s_{i}\right\}\right] d t
\end{align*}
$$

By $\xi(v, y)+y(t) \geqq 0, \forall t \in I$, and primal constraint (5), we get

$$
\begin{aligned}
& \int_{a}^{b} \xi(x, u)^{T} \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i y}-D f_{i \dot{y}}-z_{i}\right]-p_{i}\left[g_{i y}-D g_{i \dot{y}}+r_{i}\right]\right\} d t \\
& \quad=-\int_{a}^{b} y(t)^{T} \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i y}-D f_{i \dot{y}}-z_{i}\right]-p_{i}\left[g_{i y}-D g_{i \dot{y}}+r_{i}\right]\right\} d t \leqq 0 .
\end{aligned}
$$

By pseudo-invexity of $-\sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left\{\left(f_{i}-.^{T} z_{i}\right)-p_{i}\left(g_{i}+\cdot^{T} r_{i}\right)\right\} d t$ with respect to $\xi(v, y)$, we get

$$
\begin{align*}
& \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-v^{T} z_{i}\right\}\right. \\
& \left.\quad-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+v^{T} r_{i}\right\}\right] d t \\
& \quad \leqq \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-y^{T} z_{i}\right\}\right. \\
& \left.\quad-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+y^{T} r_{i}\right\}\right] d t \tag{23}
\end{align*}
$$

Since $v^{T} r_{i} \leqslant s\left(v \mid H_{i}\right), r_{i} \in H_{i}$, and $v^{T} z_{i} \leqslant s\left(v \mid D_{i}\right), z_{i} \in D_{i}$, (23) can be written as

$$
\begin{align*}
& \sum_{i=1}^{k} \tau_{i} \\
& \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))-s\left(v \mid D_{i}\right)\right\}\right. \\
&\left.-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), v(t), \dot{v}(t))+s\left(v \mid H_{i}\right)\right\}\right] d t \\
& \leqq \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left[\left\{f_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))-y^{T} z_{i}\right\}\right. \tag{24}\\
&\left.\quad-p_{i}\left\{g_{i}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))+y^{T} r_{i}\right\}\right] d t
\end{align*}
$$

From (22) and (24), we get

$$
\begin{aligned}
& \sum_{i=1}^{k} \tau_{i} \int_{a}^{b}\left(p_{i}-q_{i}\right) g_{i}(t, x, \dot{x}, v, \dot{v}) d t \\
& \quad \geqq \sum_{i=1}^{k} \tau_{i}\left[\int_{a}^{b}\left\{f_{i}(t, u, \dot{u}, v, \dot{v})-s\left(v \mid D_{i}\right)+u^{T} w_{i}\right\} d t\right. \\
& \left.\quad-q_{i} \int_{a}^{b}\left\{g_{i}(t, u, \dot{u}, v, \dot{v})+s\left(v \mid H_{i}\right)-u^{T} s_{i}\right\} d t\right] \\
& \quad-\sum_{i=1}^{k} \tau_{i}\left[\int_{a}^{b}\left\{f_{i}(t, x, \dot{x}, y, \dot{y})+s\left(x \mid C_{i}\right)-y^{T} z_{i}\right\} d t\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.-p_{i} \int_{a}^{b}\left\{g_{i}(t, x, \dot{x}, y, \dot{y})-s\left(x \mid E_{i}\right)+y^{T} r_{i}\right\} d t\right] \tag{25}
\end{equation*}
$$

From (3) and (10), (25) yields

$$
\begin{equation*}
\sum_{i=1}^{k} \tau_{i}\left(p_{i}-q_{i}\right) \int_{a}^{b} g_{i}(t, x, \dot{x}, v, \dot{v}) d t \geqq 0 \tag{26}
\end{equation*}
$$

If for some $i, p_{i}<q_{i}$ and $\forall j \neq i, p_{i} \leqq q_{i}$, then $\int_{a}^{b} g_{i}(t, x, \dot{x}, v, \dot{v}) d t>0, i=1,2, \ldots, k$, implies that

$$
\sum_{i=1}^{k} \tau_{i}\left(p_{i}-q_{i}\right) \int_{a}^{b} g_{i}(t, x, \dot{x}, v, \dot{v}) d t<0
$$

which contradicts (26). Hence $p \nless q$.
The following strong duality Theorem 3.3 and converse duality Theorem 3.4 can be established on the lines of the proofs of Theorems 3.3 and 3.4 given by Kim et al. [10] in the light of the discussions given above in this section.

Theorem 3.3 (Strong duality). Let $\left(\bar{x}(t), \bar{y}(t), \bar{p}, \bar{\tau}, \bar{z}_{1}, \bar{z}_{2}, \ldots, \bar{z}_{k}, \bar{r}_{1}, \bar{r}_{2}, \ldots, \bar{r}_{k}\right)$ be a properly efficient solution for (EMSP) and fix $\tau=\bar{\tau}$ in (EMSD), and define

$$
\bar{p}_{i}=\frac{\int_{a}^{b}\left\{f_{i}(t, \bar{x}, \dot{\bar{x}}, \bar{y}, \dot{\bar{y}})+s\left(\bar{x}(t) \mid C_{i}\right)-\bar{y}(t)^{T} \bar{z}_{i}\right\} d t}{\int_{a}^{b}\left\{g_{i}(t, \bar{x}, \dot{\bar{x}}, \bar{y}, \dot{\bar{y}})-s\left(\bar{x}(t) \mid E_{i}\right)+\bar{y}(t)^{T} \bar{r}_{i}\right\} d t}, \quad i=1,2, \ldots, k .
$$

Suppose that all the conditions in Theorem 3.1 or 3.2 are fulfilled. Furthermore, assume that
(I)

$$
\begin{aligned}
& \sum_{i=1}^{k} \bar{\tau}_{i} \int_{a}^{b} \psi(t)^{T}\left[\left\{\left[\left(f_{i y y}-z_{i}\right)-\bar{p}_{i}\left(g_{i y y}+r_{i}\right)\right]-D\left[\left(f_{i \dot{y} y}-z_{i}\right)-\bar{p}_{i}\left(g_{i \dot{y} y}+r_{i}\right)\right]\right\}\right. \\
& \quad-D\left\{\left[\left(f_{i y \dot{y}}-z_{i}-D f_{i \dot{y} \dot{y}}-f_{i \dot{y} y}\right)-\bar{p}_{i}\left(g_{i y \dot{y}}+r_{i}-D g_{i \dot{y} \dot{y}}-g_{i \dot{y} y}\right)\right]\right\} \\
& \left.\quad+D^{2}\left\{-\left[\left(f_{i \dot{y} \dot{y}}-z_{i}\right)-\bar{p}_{i}\left(g_{i \dot{y} \dot{y}}+r_{i}\right)\right]\right\}\right] \psi(t)^{T} d t=0
\end{aligned}
$$

implies that $\psi(t)=0, \forall t \in I$, and
(II)

$$
\left[\int_{a}^{b}\left\{\left(f_{1 y}-z_{1}\right)-\bar{p}_{1}\left(g_{1 y}+r_{1}\right)\right\} d t, \ldots, \int_{a}^{b}\left\{\left(f_{k y}-z_{k}\right)-\bar{p}_{k}\left(g_{k y}+r_{k}\right)\right\} d t\right]
$$

is linearly independent.
Then there exist $\bar{w}_{i} \in R^{n}, \bar{s}_{i} \in R^{m}, i=1,2, \ldots, k$, such that $\left(\bar{x}(t), \bar{y}(t), \bar{p}, \bar{\tau}, \bar{w}_{1}, \bar{w}_{2}, \ldots, \bar{w}_{k}\right.$, $\bar{s}_{1}, \bar{s}_{2}, \ldots, \bar{s}_{k}$) is a properly efficient solution of (EMSD).

Theorem 3.4 (Converse duality). Let $\left(\bar{x}(t), \bar{y}(t), \bar{p}, \bar{\tau}, \bar{z}_{1}, \bar{z}_{2}, \ldots, \bar{z}_{k}, \bar{r}_{1}, \bar{r}_{2}, \ldots, \bar{r}_{k}\right)$ be a properly efficient solution for (EMSD) and fix $\tau=\bar{\tau}$ in (EMSP), and define \bar{p}_{i} as in Theorem 3.3. Suppose that all the conditions in Theorem 3.1 or 3.2 are fulfilled. Furthermore, assume that (I) and (II) of Theorem 3.3 are satisfied. Then there exist $\bar{w}_{i} \in R^{n}, \bar{s}_{i} \in R^{m}, i=1,2, \ldots, k$, such that $\left(\bar{x}(t), \bar{y}(t), \bar{p}, \bar{\tau}, \bar{w}_{1}, \bar{w}_{2}, \ldots, \bar{w}_{k}, \bar{s}_{1}, \bar{s}_{2}, \ldots, \bar{s}_{k}\right)$ is a properly efficient solution of (EMSP).

Following Kim et al. [10], we also present self-duality for (MNFP) and (MNFD) instead of for (EMSP) and (EMSD). Assume that $x(t)$ and $y(t)$ have the same dimension. The function $f(t, x(t), \dot{x}(t), y(t), \dot{y}(t))$ is said to be skew-symmetric if

$$
f(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=-f(t, y(t), \dot{y}(t), x(t), \dot{x}(t))
$$

for all $x(t)$ and $y(t)$ in the domain of f and the function $g(t, x(t), \dot{x}(t), y(t), \dot{y}(t))$ will be called symmetric if

$$
g(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=g(t, y(t), \dot{y}(t), x(t), \dot{x}(t))
$$

In order to establish the self-duality some conditions are required. We assume that $C=D$, $E=H$ and

$$
\begin{aligned}
& g(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+s(v \mid E)-u(t)^{T} s \\
& \quad=g(t, v(t), \dot{v}(t), u(t), \dot{u}(t))-s(u \mid E)+v(t)^{T} s
\end{aligned}
$$

Theorem 3.5 (Self-duality). If $f(t, x(t), \dot{x}(t), y(t), \dot{y}(t))$ is skew-symmetric and $g(t, x(t), \dot{x}(t)$, $y(t), \dot{y}(t))$ is symmetric along with the assumptions $C=D, E=H$ and

$$
\begin{aligned}
& g(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+s(v \mid E)-u(t)^{T} s \\
& \quad=g(t, v(t), \dot{v}(t), u(t), \dot{u}(t))-s(u \mid E)+v(t)^{T} s
\end{aligned}
$$

then (MNFP) and (MNFD) are self-dual. If (MNFP) and (MNFD) are dual problems, then with $\left(x^{0}(t), y^{0}(t), p^{0}, \tau^{0}, w^{0}, s^{0}\right)$ also $\left(y^{0}(t), x^{0}(t), p^{0}, \tau^{0}, w^{0}, s^{0}\right)$ are a joint optimal solution and the common optimal value is zero.

Proof. As in Kim et al. [10], we have

$$
\begin{aligned}
& f_{x}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=-f_{y}(t, y(t), \dot{y}(t), x(t), \dot{x}(t)), \\
& f_{y}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=-f_{x}(t, y(t), \dot{y}(t), x(t), \dot{x}(t)), \\
& f_{\dot{x}}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=-f_{\dot{y}}(t, y(t), \dot{y}(t), x(t), \dot{x}(t)), \\
& f_{\dot{y}}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=-f_{\dot{x}}(t, y(t), \dot{y}(t), x(t), \dot{x}(t))
\end{aligned}
$$

and with g symmetric, we have

$$
\begin{aligned}
& g_{x}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=g_{y}(t, y(t), \dot{y}(t), x(t), \dot{x}(t)), \\
& g_{y}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=g_{x}(t, y(t), \dot{y}(t), x(t), \dot{x}(t)), \\
& g_{\dot{x}}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=g_{\dot{y}}(t, y(t), \dot{y}(t), x(t), \dot{x}(t)), \\
& g_{\dot{y}}(t, x(t), \dot{x}(t), y(t), \dot{y}(t))=g_{\dot{x}}(t, y(t), \dot{y}(t), x(t), \dot{x}(t)) .
\end{aligned}
$$

Expressing the dual problem (MNFD) as a minimization problem and making use of above relations and conditions given in the theorem, we have

$$
\begin{aligned}
& \text { Min } \quad \frac{\int_{a}^{b}\left\{f(t, v(t), \dot{v}(t), u(t), \dot{u}(t))+s(u(t) \mid C)-v(t)^{T} w\right\} d t}{\int_{a}^{b}\left\{g(t, v(t), \dot{v}(t), u(t), \dot{u}(t))-s(u(t) \mid E)+v(t)^{T} s\right\} d t} \\
& \text { subject to } \quad u(a)=0=u(b), \quad v(a)=0=v(b), \\
& \dot{u}(a)=0=\dot{u}(b), \quad \dot{v}(a)=0=\dot{v}(b), \\
& \\
& \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i v}-D f_{i \dot{v}}-w_{i}\right] G_{i}(v, u)-\left[g_{i v}-D g_{i \dot{v}}+s_{i}\right] F_{i}(v, u)\right\} \leqq 0, \\
& \\
& \int_{a}^{b} v(t)^{T} \sum_{i=1}^{k} \tau_{i}\left\{\left[f_{i v}-D f_{i \dot{v}}-w_{i}\right] G_{i}(v, u)-\left[g_{i v}-D g_{i \dot{v}}+s_{i}\right] F_{i}(v, u)\right\} \geqq 0, \\
& \tau>0, \quad \tau^{T} e=1, \quad t \in I, \\
& w_{i} \in C_{i}, \quad s_{i} \in E_{i}, \quad i=1,2, \ldots, k,
\end{aligned}
$$

which is just the primal problem (MNFP). Thus if $\left(x^{0}(t), y^{0}(t), p^{0}, \tau^{0}, w^{0}, s^{0}\right)$ is an optimal solution for (MNFD), then ($\left.y^{0}(t), x^{0}(t), p^{0}, \tau^{0}, w^{0}, s^{0}\right)$ is an optimal solution for (MNFD).

Since f is skew-symmetric, g is symmetric, $C=D, E=H$ and

$$
\begin{aligned}
& g(t, u(t), \dot{u}(t), v(t), \dot{v}(t))+s(v \mid E)-u(t)^{T} s \\
& \quad=g(t, v(t), \dot{v}(t), u(t), \dot{u}(t))-s(u \mid E)+v(t)^{T} s,
\end{aligned}
$$

we have

$$
\begin{aligned}
& \frac{\int_{a}^{b}\left\{f\left(t, y(t), \dot{y}^{0}(t), x^{0}(t), \dot{x}^{0}(t)\right)+s\left(x^{0}(t) \mid C\right)-y^{0}(t)^{T} w^{0}\right\} d t}{\int_{a}^{b}\left\{g\left(t, y^{0}(t), \dot{y}^{0}(t), x^{0}(t), \dot{x}^{0}(t)\right)-s\left(x^{0}(t) \mid E\right)+y^{0}(t)^{T} s^{0}\right\} d t} \\
& \quad=-\frac{\int_{a}^{b}\left\{f\left(t, x^{0}(t), \dot{x}^{0}(t), y(t), \dot{y}^{0}(t)\right)-s\left(y^{0}(t) \mid C\right)+x^{0}(t)^{T} w^{0}\right\} d t}{\int_{a}^{b}\left\{g\left(t, x^{0}(t), \dot{x}^{0}(t), y^{0}(t), \dot{y}^{0}(t)\right)+s\left(y^{0}(t) \mid E\right)-x^{0}(t)^{T} s^{0}\right\} d t} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\int_{a}^{b}\left\{f\left(t, x^{0}(t), \dot{x}^{0}(t), y(t), \dot{y}^{0}(t)\right)-s\left(y^{0}(t) \mid C\right)+x^{0}(t)^{T} w^{0}\right\} d t}{\int_{a}^{b}\left\{g\left(t, x^{0}(t), \dot{x}^{0}(t), y^{0}(t), \dot{y}^{0}(t)\right)+s\left(y^{0}(t) \mid E\right)-x^{0}(t)^{T} s^{0}\right\} d t} \\
& \quad=\frac{\int_{a}^{b}\left\{f\left(t, y(t), \dot{y}^{0}(t), x^{0}(t), \dot{x}^{0}(t)\right)+s\left(x^{0}(t) \mid C\right)-y^{0}(t)^{T} w^{0}\right\} d t}{\int_{a}^{b}\left\{g\left(t, y^{0}(t), \dot{y}^{0}(t), x^{0}(t), \dot{x}^{0}(t)\right)-s\left(x^{0}(t) \mid E\right)+y^{0}(t)^{T} s^{0}\right\} d t} \\
& \quad=-\frac{\int_{a}^{b}\left\{f\left(t, x^{0}(t), \dot{x}^{0}(t), y(t), \dot{y}^{0}(t)\right)-s\left(y^{0}(t) \mid C\right)+x^{0}(t)^{T} w^{0}\right\} d t}{\int_{a}^{b}\left\{g\left(t, x^{0}(t), \dot{x}^{0}(t), y^{0}(t), \dot{y}^{0}(t)\right)+s\left(y^{0}(t) \mid E\right)-x^{0}(t)^{T} s^{0}\right\} d t},
\end{aligned}
$$

and so

$$
\begin{aligned}
& \frac{\int_{a}^{b}\left\{f\left(t, x^{0}(t), \dot{x}^{0}(t), y(t), \dot{y}^{0}(t)\right)-s\left(y^{0}(t) \mid C\right)+x^{0}(t)^{T} w^{0}\right\} d t}{\int_{a}^{b}\left\{g\left(t, x^{0}(t), \dot{x}^{0}(t), y^{0}(t), \dot{y}^{0}(t)\right)+s\left(y^{0}(t) \mid E\right)-x^{0}(t)^{T} s^{0}\right\} d t} \\
& \quad=\frac{\int_{a}^{b}\left\{f\left(t, y(t), \dot{y}^{0}(t), x^{0}(t), \dot{x}^{0}(t)\right)+s\left(x^{0}(t) \mid C\right)-y^{0}(t)^{T} w^{0}\right\} d t}{\int_{a}^{b}\left\{g\left(t, y^{0}(t), \dot{y}^{0}(t), x^{0}(t), \dot{x}^{0}(t)\right)-s\left(x^{0}(t) \mid E\right)+y^{0}(t)^{T} s^{0}\right\} d t}=0 .
\end{aligned}
$$

4. The static case

If the time dependence of programs (MNFP) and (MNFD) is removed and the functions involved are considered to have domain $R^{n} \times R^{m}$, we obtain the symmetric dual fractional pair given by

$$
\begin{aligned}
& \text { (SNMFP) Minimize }\left(\frac{f_{1}(x, y)+s\left(x \mid C_{1}\right)-y^{T} z_{1}}{g_{1}(x, y)-s\left(x \mid E_{1}\right)+y^{T} r_{1}}, \ldots, \frac{f_{k}(x, y)+s\left(x \mid C_{k}\right)-y^{T} z_{k}}{g_{k}(x, y)-s\left(x \mid E_{k}\right)+y^{T} r_{k}}\right) \\
& \text { subject to } \sum_{i=1}^{k} \tau_{i}\left[\nabla_{y} f_{i}(x, y)-z_{i}\right. \\
& \left.-\frac{f_{i}(x, y)+s\left(x \mid C_{i}\right)-y^{T} z_{i}}{g_{i}(x, y)-s\left(x \mid E_{i}\right)+y^{T} r_{i}}\left(\nabla_{y} g_{i}(x, y)+r_{i}\right)\right] \leqslant 0, \\
& y^{T} \sum_{i=1}^{k} \tau_{i}\left[\nabla_{y} f_{i}(x, y)-z_{i}\right. \\
& \left.-\frac{f_{i}(x, y)+s\left(x \mid C_{i}\right)-y^{T} z_{i}}{g_{i}(x, y)-s\left(x \mid E_{i}\right)+y^{T} r_{i}}\left(\nabla_{y} g_{i}(x, y)+r_{i}\right)\right] \geqslant 0, \\
& z_{i} \in D_{i}, \quad r_{i} \in F_{i}, \quad 1 \leqslant i \leqslant k, \quad \tau>0, \quad \tau^{T} e=1, \quad x \geqslant 0 . \\
& \text { (SNMFD) Maximize }\left(\frac{f_{1}(u, v)-s\left(v \mid D_{1}\right)+u^{T} w_{1}}{g_{1}(u, v)+s\left(v \mid F_{1}\right)-u^{T} t_{1}}, \ldots\right. \text {, } \\
& \left.\frac{f_{k}(u, v)-s\left(v \mid D_{k}\right)+u^{T} w_{k}}{g_{k}(u, v)+s\left(v \mid F_{k}\right)-u^{T} t_{k}}\right) \\
& \text { subject to } \sum_{i=1}^{k} \tau_{i}\left[\nabla_{u} f_{i}(u, v)+w_{i}\right. \\
& \left.-\frac{f_{i}(u, v)-s\left(v \mid D_{i}\right)+u^{T} w_{i}}{g_{i}(u, v)+s\left(v \mid F_{i}\right)-u^{T} t_{i}}\left(\nabla_{u} g_{i}(u, v)-t_{i}\right)\right] \geqslant 0, \\
& u^{T} \sum_{i=1}^{k} \tau_{i}\left[\nabla_{u} f_{i}(u, v)+w_{i}\right. \\
& \left.-\frac{f_{i}(u, v)-s\left(v \mid D_{i}\right)+u^{T} w_{i}}{g_{i}(u, v)+s\left(v \mid F_{i}\right)-u^{T} t_{i}}\left(\nabla_{u} g_{i}(u, v)-t_{i}\right)\right] \leqslant 0, \\
& w_{i} \in C_{i}, \quad t_{i} \in E_{i}, \quad 1 \leqslant i \leqslant k, \quad \tau>0, \quad \tau^{T} e=1, \quad v \geqslant 0 .
\end{aligned}
$$

The pair of problems (SNMFP) and (SNMFD) obtained above is exactly the pair of problems (FP) and (FD) considered by Yang et al. [28].

If we set $k=1$, and our problems are time independent, we get the following pair of problems:
(SNFP) Minimize $\left(\frac{f(x, y)+s(x \mid C)-y^{T} z}{g(x, y)-s(x \mid E)+y^{T} r}\right)$
subject to $\left[\nabla_{y} f(x, y)-z-\frac{f(x, y)+s(x \mid C)-y^{T} z}{g(x, y)-s(x \mid E)+y^{T} r}\left(\nabla_{y} g(x, y)+r\right)\right] \leqslant 0$,

$$
\begin{gathered}
\qquad \begin{aligned}
& y^{T} {\left[\nabla_{y} f(x, y)-z\right.} \\
&\left.-\frac{f(x, y)+s(x \mid C)-y^{T} z}{g(x, y)-s(x \mid E)+y^{T} r}\left(\nabla_{y} g(x, y)+r\right)\right] \geqslant 0, \\
& z \in D, \quad r \in F, \quad x \geqslant 0 . \\
& \text { (SNFD) Maximize } \quad\left(\frac{f(u, v)-s(v \mid D)+u^{T} w}{g(u, v)+s(v \mid F)-u^{T} t}\right) \\
& \text { subject to } \quad {\left[\nabla_{u} f(u, v)+w-\frac{f(u, v)-s(v \mid D)+u^{T} w}{g(u, v)+s(v \mid F)-u^{T} t}\left(\nabla_{u} g(u, v)-t\right)\right] \geqslant 0, } \\
& u^{T}\left[\nabla_{u} f(u, v)+w\right. \\
&\left.\quad-\frac{f(u, v)-s(v \mid D)+u^{T} w}{g(u, v)+s(v \mid F)-u^{T} t}\left(\nabla_{u} g(u, v)-t\right)\right] \leqslant 0, \\
& w \in C, \quad t \in E, \quad v \geqslant 0 .
\end{aligned}
\end{gathered}
$$

The pair of problems (SNFP) and (SNFD) is exactly the pair of problems (FP) and (FD) considered by Yang et al. [29].

If we remove the nondifferentiable terms of our problems, we get the problems discussed in Section 4 of Kim et al. [10].

5. Conclusion

In this paper, we have extended an earlier work of Kim et al. [10] to nondifferentiable case. Our results also extend an earlier work of Yang et al. [28] to continuous-time case. Many other results on symmetric duality in literature are particular cases of the results obtained in the present paper.

Acknowledgments

Authors are thankful to Professor William F. Ames and an anonymous referee for careful reading of the manuscript and constructive suggestions.

References

[1] S. Chandra, B.D. Craven, B. Mond, Symmetric dual fractional programming, Z. Oper. Res. 29 (1985) 59-64.
[2] X.H. Chen, Symmetric duality for the multiobjective fractional variational problems with partial invexity, J. Math. Anal. Appl. 245 (2000) 105-123.
[3] R.W. Cottle, Symmetric dual quadratic programs, Quart. Appl. Math. 21 (1963) 237-243.
[4] G.B. Dantzig, E. Eisenberg, R.W. Cottle, Symmetric dual nonlinear programs, Pacific J. Math. 15 (1965) 809-812.
[5] W.S. Dorn, A symmetric dual theorem for quadratic programs, J. Oper. Res. Soc. Japan 2 (1960) 93-97.
[6] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981) 545-550.
[7] D.S. Kim, G.M. Lee, Symmetric duality with pseudo-invexity in variational problems, Optimization 28 (1993) 9-16.
[8] D.S. Kim, W.J. Lee, Symmetric duality for multiobjective variational problems with invexity, J. Math. Anal. Appl. 218 (1998) 34-48.
[9] D.S. Kim, W.J. Lee, Generalized symmetric duality for multiobjective variational problems with invexity, J. Math. Anal. Appl. 234 (1999) 147-164.
[10] D.S. Kim, W.J. Lee, S. Schaible, Symmetric duality for invex multiobjective fractional variational problems, J. Math. Anal. Appl. 289 (2004) 505-521.
[11] O.L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.
[12] S.K. Mishra, R.N. Mukherjee, Generalized continuous nondifferentiable fractional programming problems with invexity, J. Math. Anal. Appl. 195 (1995) 191-213.
[13] S.K. Mishra, R.N. Mukherjee, Duality for multiobjective fractional variational problems, J. Math. Anal. Appl. 186 (1994) 711-725.
[14] S.K. Mishra, R.N. Mukherjee, On efficiency and duality for multiobjective variational problems, J. Math. Anal. Appl. 187 (1994) 40-54.
[15] B. Mond, A symmetric dual theory for nonlinear programs, Quart. Appl. Math. 23 (1965) 265-269.
[16] B. Mond, M.A. Hanson, Symmetric duality for variational problems, J. Math. Anal. Appl. 23 (1968) 161-172.
[17] B. Mond, S. Chandra, M.V.D. Prasad, Symmetric dual nondifferentiable fractional programs, Indian J. Manag. Syst. 13 (1987) 1-10.
[18] B. Mond, M. Schechter, Nondifferentiable symmetric duality, Bull. Austral. Math. Soc. 53 (1996) 177-188.
[19] B. Mond, T. Weir, Generalized concavity and duality, in: S. Schaible, W.T. Ziemba (Eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981, pp. 263-279.
[20] R.N. Mukherjee, S.K. Mishra, Sufficient optimality criteria and duality for multiobjective variational problems with V-invexity, Indian J. Pure Appl. Math. 25 (1994) 801-813.
[21] R.N. Mukherjee, S.K. Mishra, Generalized invexity and duality in multiple objective variational problems, J. Math. Anal. Appl. 195 (1995) 307-322.
[22] S. Schaible, Duality in fractional programming: A unified approach, Oper. Res. 24 (1976) 452-461.
[23] S. Schaible, Fractional programming: I, Duality, Management Sci. 22 (1976) 858-867.
[24] S. Schaible, Fractional programming, in: R. Horst, P.M. Pardalos (Eds.), Handbook of Global Optimization, Kluwer Academic, Dordrecht, 1995, pp. 495-608.
[25] I. Smart, B. Mond, Symmetric duality with invexity in variational problems, J. Math. Anal. Appl. 152 (1990) 536545.
[26] T. Weir, Symmetric dual multiobjective fractional programming, J. Austral. Math. Soc. Ser. A 50 (1991) 67-74.
[27] T. Weir, B. Mond, Symmetric and self duality in multiple objective programming, Asia-Pacific J. Oper. Res. 5 (1988) 124-133.
[28] X.M. Yang, S.Y. Wang, X.T. Deng, Symmetric duality for a class of multiobjective fractional programming problems, J. Math. Anal. Appl. 274 (2002) 279-295.
[29] X.M. Yang, K.L. Teo, X.Q. Yang, Symmetric duality for a class of nonlinear fractional programming problems, J. Math. Anal. Appl. 271 (2002) 7-15.

[^0]: th This research is supported by the Council of Scientific and Industrial Research, New Delhi, Ministry of Human Resources Development, Government of India, through Grant No. 25 (0132)/04/EMR-II, National Natural Science Foundation of China and Research Grants Council of Hong Kong.

 * Corresponding author.

 E-mail address: msshas@cityu.edu.hk (S.K. Mishra).

