18 research outputs found

    Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers

    Get PDF
    Altres ajuts: European Alzheimer DNA BioBank, EADB; EU Joint Programme, Neurodegenerative Disease Research (JPND); Neurodegeneration research program of Amsterdam Neuroscience; Stichting Alzheimer Nederland; Stichting VUmc fonds; Stichting Dioraphte; JPco-fuND FP-829-029 (ZonMW projectnumber 733051061); Dutch Federation of University Medical Centers; Dutch Government (from 2007-2011); JPND EADB grant (German Federal Ministry of Education and Research (BMBF) grant: 01ED1619A); German Research Foundation (DFG RA 1971/6-1, RA1971/7-1, RA 1971/8-1); Grifols SA; Fundación bancaria 'La Caixa'; Fundació ACE; CIBERNED; Fondo Europeo de Desarrollo Regional (FEDER-'Una manera de hacer Europa'); NIH (P30AG066444, P01AG003991); Alzheimer Research Foundation (SAO-FRA), The Research Foundation Flanders (FWO), and the University of Antwerp Research Fund. FK is supported by a BOF DOCPRO fellowship of the University of Antwerp Research Fund; Siemens Healthineers; Valdecilla Biobank (PT17/0015/0019); Academy of Finland (338182); German Center for Neurodegenerative Diseases (DZNE); German Federal Ministry of Education and Research (BMBF 01G10102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434, 01GI0711); ZonMW (#73305095007); Health~Holland, Topsector Life Sciences & Health (PPP-allowance #LSHM20106); Hersenstichting; Edwin Bouw Fonds; Gieskes-Strijbisfonds; NWO Gravitation program BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012); Swedish Alzheimer Foundation (AF-939988, AF-930582, AF-646061, AF-741361); Dementia Foundation (2020-04-13, 2021-04-17); Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALF 716681); Swedish Research Council (11267, 825-2012-5041, 2013-8717, 2015-02830, 2017-00639, 2019-01096); Swedish Research Council for Health, Working Life and Welfare (2001-2646, 2001-2835, 2001-2849, 2003-0234, 2004-0150, 2005-0762, 2006-0020, 2008-1229, 2008-1210, 2012-1138, 2004-0145, 2006-0596, 2008-1111, 2010-0870, 2013-1202, 2013-2300, 2013-2496); Swedish Brain Power, Hjärnfonden, Sweden (FO2016-0214, FO2018-0214, FO2019-0163); Alzheimer's Association Zenith Award (ZEN-01-3151); Alzheimer's Association Stephanie B. Overstreet Scholars (IIRG-00-2159); Alzheimer's Association (IIRG-03-6168, IIRG-09-131338); Bank of Sweden Tercentenary Foundation; Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-81392, ALFGBG-771071); Swedish Alzheimer Foundation (AF-842471, AF-737641, AF-939825); Swedish Research Council (2019-02075); Swedish Research Council (2016-01590); BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (024.004.012); Swedish Research Council (2018-02532); Swedish State Support for Clinical Research (ALFGBG-720931); Alzheimer Drug Discovery Foundation (ADDF), USA (201809-2016862); UK Dementia Research Institute at UCL; Swedish Research Council (#2017-00915); Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615); Swedish Alzheimer Foundation (#AF-742881); Hjärnfonden, Sweden (#FO2017-0243); Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986); National Institute of Health (NIH), USA, (#1R01AG068398-01); Alzheimer's Association 2021 Zenith Award (ZEN-21-848495); National Institutes of Health (R01AG044546, R01AG064877, RF1AG053303, R01AG058501, U01AG058922, RF1AG058501, R01AG064614); Chuck Zuckerberg Initiative (CZI).Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume

    CSF biomarkers for the differential diagnosis of Alzheimer's disease: A large-scale international multicenter study.

    No full text
    INTRODUCTION: The aim of this study was to test the diagnostic value of cerebrospinal fluid (CSF) beta-amyloid (Aβ1-42), phosphorylated tau, and total tau (tau) to discriminate Alzheimer's disease (AD) dementia from other forms of dementia. METHODS: A total of 675 CSF samples collected at eight memory clinics were obtained from healthy controls, AD dementia, subjective memory impairment, mild cognitive impairment, vascular dementia, Lewy body dementia (LBD), fronto-temporal dementia (FTD), depression, or other neurological diseases. RESULTS: CSF Aβ1-42 showed the best diagnostic accuracy among the CSF biomarkers. At a sensitivity of 85%, the specificity to differentiate AD dementia against other diagnoses ranged from 42% (for LBD, 95% confidence interval or CI = 32-62) to 77% (for FTD, 95% CI = 62-90). DISCUSSION: CSF Aβ1-42 discriminates AD dementia from FTD, but shows significant overlap with other non-AD forms of dementia, possibly reflecting the underlying mixed pathologies

    CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment.

    No full text
    Contains fulltext : 80451.pdf (publisher's version ) (Closed access)CONTEXT: Small single-center studies have shown that cerebrospinal fluid (CSF) biomarkers may be useful to identify incipient Alzheimer disease (AD) in patients with mild cognitive impairment (MCI), but large-scale multicenter studies have not been conducted. OBJECTIVE: To determine the diagnostic accuracy of CSF beta-amyloid(1-42) (Abeta42), total tau protein (T-tau), and tau phosphorylated at position threonine 181 (P-tau) for predicting incipient AD in patients with MCI. DESIGN, SETTING, AND PARTICIPANTS: The study had 2 parts: a cross-sectional study involving patients with AD and controls to identify cut points, followed by a prospective cohort study involving patients with MCI, conducted 1990-2007. A total of 750 individuals with MCI, 529 with AD, and 304 controls were recruited by 12 centers in Europe and the United States. Individuals with MCI were followed up for at least 2 years or until symptoms had progressed to clinical dementia. MAIN OUTCOME MEASURES: Sensitivity, specificity, positive and negative likelihood ratios (LRs) of CSF Abeta42, T-tau, and P-tau for identifying incipient AD. RESULTS: During follow-up, 271 participants with MCI were diagnosed with AD and 59 with other dementias. The Abeta42 assay in particular had considerable intersite variability. Patients who developed AD had lower median Abeta42 (356; range, 96-1075 ng/L) and higher P-tau (81; range, 15-183 ng/L) and T-tau (582; range, 83-2174 ng/L) levels than MCI patients who did not develop AD during follow-up (579; range, 121-1420 ng/L for Abeta42; 53; range, 15-163 ng/L for P-tau; and 294; range, 31-2483 ng/L for T-tau, P < .001). The area under the receiver operating characteristic curve was 0.78 (95% confidence interval [CI], 0.75-0.82) for Abeta42, 0.76 (95% CI, 0.72-0.80) for P-tau, and 0.79 (95% CI, 0.76-0.83) for T-tau. Cut-offs with sensitivity set to 85% were defined in the AD and control groups and tested in the MCI group, where the combination of Abeta42/P-tau ratio and T-tau identified incipient AD with a sensitivity of 83% (95% CI, 78%-88%), specificity 72% (95% CI, 68%-76%), positive LR, 3.0 (95% CI, 2.5-3.4), and negative LR, 0.24 (95% CI, 0.21-0.28). The positive predictive value was 62% and the negative predictive value was 88%. CONCLUSIONS: This multicenter study found that CSF Abeta42, T-tau, and P-tau identify incipient AD with good accuracy, but less accurately than reported from single-center studies. Intersite assay variability highlights a need for standardization of analytical techniques and clinical procedures

    Age and diagnostic performance of Alzheimer disease CSF biomarkers.

    Get PDF
    Item does not contain fulltextOBJECTIVES: Core CSF changes in Alzheimer disease (AD) are decreased amyloid beta(1-42), increased total tau, and increased phospho-tau, probably indicating amyloid plaque accumulation, axonal degeneration, and tangle pathology, respectively. These biomarkers identify AD already at the predementia stage, but their diagnostic performance might be affected by age-dependent increase of AD-type brain pathology in cognitively unaffected elderly. METHODS: We investigated effects of age on the diagnostic performance of CSF biomarkers in a uniquely large multicenter study population, including a cross-sectional cohort of 529 patients with AD dementia (median age 71, range 43-89 years) and 304 controls (67, 44-91 years), and a longitudinal cohort of 750 subjects without dementia with mild cognitive impairment (69, 43-89 years) followed for at least 2 years, or until dementia diagnosis. RESULTS: The specificities for subjects without AD and the areas under the receiver operating characteristics curves decreased with age. However, the positive predictive value for a combination of biomarkers remained stable, while the negative predictive value decreased only slightly in old subjects, as an effect of the high AD prevalence in older ages. CONCLUSION: Although the diagnostic accuracies for AD decreased with age, the predictive values for a combination of biomarkers remained essentially stable. The findings highlight biomarker variability across ages, but support the use of CSF biomarkers for AD even in older populations

    Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS

    No full text
    OBJECTIVE: Neurofilaments are leading neurochemical biomarkers for amyotrophic lateral sclerosis (ALS). Here, we investigated the effect of preanalytical factors on neurofilament concentrations in cerebrospinal fluid (CSF) in a “reverse” round-robin with 15 centers across Europe/U.S. METHODS: Samples from ALS and control patients (5/5 each center, n = 150) were analyzed for phosphorylated neurofilament heavy chain (pNfH) and neurofilament light chain (NfL) at two laboratories. RESULTS: CSF pNfH was increased (p 568.5 pg/mL for pNfH (sensitivity 78.7%, specificity 93.3%) and >1,431pg/mL for NfL (sensitivity 79.0%, specificity 86.4%). CONCLUSION: Values in ALS patients are already comparable between most centers, supporting eventual implementation into clinical routine. However, continuous quality control programs will be necessary for inclusion in the diagnostic work-up

    Comparison of Different Matrices as Potential Quality Control Samples for Neurochemical Dementia Diagnostics

    No full text
    BACKGROUND: Assay-vendor independent quality control (QC) samples for neurochemical dementia diagnostics (NDD) biomarkers are so far commercially unavailable. This requires that NDD laboratories prepare their own QC samples, for example by pooling leftover cerebrospinal fluid (CSF) samples. OBJECTIVE: To prepare and test alternative matrices for QC samples that could facilitate intra- and inter-laboratory QC of the NDD biomarkers. METHODS: Three matrices were validated in this study: (A) human pooled CSF, (B) Abeta peptides spiked into human prediluted plasma, and (C) Abeta peptides spiked into solution of bovine serum albumin in phosphate-buffered saline. All matrices were tested also after supplementation with an antibacterial agent (sodium azide). We analyzed short- and long-term stability of the biomarkers with ELISA and chemiluminescence (Fujirebio Europe, MSD, IBL International), and performed an inter-laboratory variability study. RESULTS: NDD biomarkers turned out to be stable in almost all samples stored at the tested conditions for up to 14 days as well as in samples stored deep-frozen (at - 80 degrees C) for up to one year. Sodium azide did not influence biomarker stability. Inter-center variability of the samples sent at room temperature (pooled CSF, freeze-dried CSF, and four artificial matrices) was comparable to the results obtained on deep-frozen samples in other large-scale projects. CONCLUSION: Our results suggest that it is possible to replace self-made, CSF-based QC samples with large-scale volumes of QC materials prepared with artificial peptides and matrices. This would greatly facilitate intra- and inter-laboratory QC schedules for NDD measurements

    Improved Cerebrospinal Fluid-Based Discrimination between Alzheimer's Disease Patients and Controls after Correction for Ventricular Volumes

    No full text
    Cerebrospinal fluid (CSF) biomarkers may support the diagnosis of Alzheimer's disease (AD). We studied if the diagnostic power of AD CSF biomarker concentrations, i.e., Abeta42, total tau (t-tau), and phosphorylated tau (p-tau), is affected by differences in lateral ventricular volume (VV), using CSF biomarker data and magnetic resonance imaging (MRI) scans of 730 subjects, from 13 European Memory Clinics. We developed a Matlab-algorithm for standardized automated segmentation analysis of T1 weighted MRI scans in SPM8 for determining VV, and computed its ratio with total intracranial volume (TIV) as proxy for total CSF volume. The diagnostic power of CSF biomarkers (and their combination), either corrected for VV/TIV ratio or not, was determined by ROC analysis. CSF Abeta42 levels inversely correlated to VV/TIV in the whole study population (Abeta42: r = -0.28; p < 0.0001). For CSF t-tau and p-tau, this association only reached statistical significance in the combined MCI and AD group (t-tau: r = -0.15; p-tau: r = -0.13; both p < 0.01). Correction for differences in VV/TIV improved the differentiation of AD versus controls based on CSF Abeta42 alone (AUC: 0.75 versus 0.81) or in combination with t-tau (AUC: 0.81 versus 0.91). In conclusion, differences in VV may be an important confounder in interpreting CSF Abeta42 levels
    corecore