41 research outputs found

    Influence of Demagnetization Effect on Giant Magneto Impedance of soft Ferromagnetic Metal

    Full text link
    The large change in electromagnetic impedance in ferromagnetic state of soft magnetic metals in presence of biasing magnetic field is associated with change in screening of electromagnetic field. The screening depends on the permeability of the metal. Apart from dependence on intrinsic properties of metal the permeability depends on size of the sample. It is observed that the decrease in MI in amorphous ferromagnetic ribbon of Fe40Ni40B20 alloy is large for long sample whereas corresponding change is small for short one with same biasing field. As intrinsic magnetic properties and bias field are same and the demagnetization factor increases with reduction of length of the sample the reduction of MI effect is associated with demagnetization field.Comment: 14 pages,4 figure

    Interplay of magnetic order and Jahn-Teller distortion in a model with strongly correlated electron system

    Full text link
    The Hubbard model has been employed successfully to understand many aspects of correlation driven physical properties, in particular, the magnetic order in itenerant electron systems. In some systems such as Heusler alloys, manganites etc., it is known that, in addition to magnetic order, distortion induced by Jahn-Teller(J-T) effect also exists. In this paper, based on two-fold degenerate Hubbard model, the influence of magnetic order on J-T distortion is investigated. The electron correlation is treated using a spectral density approach and J-T interaction is added to the model. We find that magnetic order and structural distortion coexist at low temperature TT for a certain range of electron correlation strength UU, J-T coupling strength GG and band occupation nn. At T=0, for a given nn and UU, magnetic order is present but distortion appears only for a GG larger than a critical value. We also studied the temperature dependence of lattice strain and magnetization choosing a GG close to the critical value.Comment: 12 pages, 5 Figures. Physica- B 405 1701-1705 (2010

    Mutual influence of structural distortion and superconductivity in systems with degenerate bands

    Full text link
    The interplay between the band Jahn-Teller distortion and the superconductivity is studied for the system whose Fermi level lies in two-fold degenerate band. Assuming that the lattice distortion is coupled to the orbital electron density and the superconductivity arises due to BCS pairing mechanism between the electrons, the phase diagram is obtained for different doping with respect to half-filled band situation. The coexistence phase of superconductivity and distortion occurs within limited range of doping and the distortion lowers the superconducting transition temperature TcT_c. In presence of strong electron-lattice interaction the lattice strain is found to be maximum at half-filling and superconductivity does not appear for low doping. The maximum value of TcT_c obtainable for an optimum doping is limited by the structural transition temperature TsT_s. The growth of distortion is arrested with the onset of superconductivity and the distortion is found to disappear at lower temperature for some hole density. Such arresting of the growth of distortion at TcT_c produces discontinuous jump in thermal expansion coefficient. The variation of strain with temperature as well as with doping, thermal expansion coefficient, the TcT_c vs δ\delta behaviour are in qualitative agreement with recent experimental observations on interplay of distortion and superconductivity in cuprates.Comment: 15 pages Revtex style, 9 figures available on request to first Autho

    Very large Magneto-impedance and its scaling behavior in amorphous Fe73.5Nb3Cu1Si13.5B9 ribbon

    Full text link
    Magneto-impedance (MI) effects have been observed for amorphous Fe73.5Nb3Cu1Si13.5B9 ribbon which has been excited by an a.c. magnetic field parallel to the length of the ribbon. Maximum relative change in MI as large as -99% was observed which has never been reported before. The relative change in MI, when plotted against scaled field was found to be nearly frequency independent. A phenomenological formula for magneto-impedance, Z(H), in a ferromagnetic material, is proposed based on Pade approximant to describe the scaled behavior of MI.Comment: 20 pages, 7 figures, article in press, Physica B (2007

    Influence of microwave annealing on GMI response and magnetization of an amorphous Fe73.5Nb3Cu1Si13.5B9 ribbon

    Full text link
    The resistive and reactive components of magneto-impedance was studied for the as-quenched and microwave annealed amorphous Fe73.5Nb3Cu1Si13.5B9 ribbon as a function of biasing d.c magnetic fields (-60 to +60 Oe) and excitation frequencies (0.1, 1, 10 and 20MHz). The magneto-impedance (both components) response was much reduced for the microwave annealed ribbon and the changes were more discernable at higher excitation frequencies. The imaginary component of magneto-impedance showed maxima at finite (non-zero) d.c magnetic fields for both the as-quenched and microwave annealed ribbons. Magnetization measurements performed for both the as-quenched and microwave annealed ribbons revealed the magnetic hardness of the latter. The initial susceptibility decreases by two orders of magnitude for the microwave-annealed ribbon. XRD measurements indicated the transformation of the surface of the ribbon from the amorphous state to the crystalline one.Comment: 14 pages, 6 figure

    Spin and density overlaps in the frustrated Ising lattice gas

    Full text link
    We perform large scale simulations of the frustrated Ising lattice gas, a three-dimensional lattice model of a structural glass, using the parallel tempering technique. We evaluate the spin and density overlap distributions, and the corresponding non-linear susceptibilities, as a function of the chemical potential. We then evaluate the relaxation functions of the spin and density self-overlap, and study the behavior of the relaxation times. The results suggest that the spin variables undergo a transition very similar to the one of the Ising spin glass, while the density variables do not show any sign of transition at the same chemical potential. It may be that the density variables undergo a transition at a higher chemical potential, inside the phase where the spins are frozen.Comment: 7 pages, 10 figure

    Dynamics and thermodynamics of the spherical frustrated Blume-Emery-Griffiths model

    Full text link
    We introduce a spherical version of the frustrated Blume-Emery-Griffiths model and solve exactly the statics and the Langevin dynamics for zero particle-particle coupling (K=0). In this case the model exhibits an equilibrium transition from a disordered to a spin glass phase which is always continuous for nonzero temperature. The same phase diagram results from the study of the dynamics. Furthermore, we notice the existence of a nonequilibrium time regime in a region of the disordered phase, characterized by aging as occurs in the spin glass phase. Due to a finite equilibration time, the system displays in this region the pattern of interrupted aging.Comment: 19 pages, 8 figure

    Fermionic SK-models with Hubbard interaction: Magnetism and electronic structure

    Full text link
    Models with range-free frustrated Ising spin- and Hubbard interaction are treated exactly by means of the discrete time slicing method. Critical and tricritical points, correlations, and the fermion propagator, are derived as a function of temperature T, chemical potential \mu, Hubbard coupling U, and spin glass energy J. The phase diagram is obtained. Replica symmetry breaking (RSB)-effects are evaluated up to four-step order (4RSB). The use of exact relations together with the 4RSB-solutions allow to model exact solutions by interpolation. For T=0, our numerical results provide strong evidence that the exact density of states in the spin glass pseudogap regime obeys \rho(E)=const |E-E_F| for energies close to the Fermi level. Rapid convergence of \rho'(E_F) under increasing order of RSB is observed. The leading term resembles the Efros-Shklovskii Coulomb pseudogap of localized disordered fermionic systems in 2D. Beyond half filling we obtain a quadratic dependence of the fermion filling factor on the chemical potential. We find a half filling transition between a phase for U>\mu, where the Fermi level lies inside the Hubbard gap, into a phase where \mu(>U) is located at the center of the upper spin glass pseudogap (SG-gap). For \mu>U the Hubbard gap combines with the lower one of two SG-gaps (phase I), while for \mu<U it joins the sole SG-gap of the half-filling regime (phase II). We predict scaling behaviour at the continuous half filling transition. Implications of the half-filling transition between the deeper insulating phase II and phase I for delocalization due to hopping processes in itinerant model extensions are discussed and metal-insulator transition scenarios described.Comment: 29 pages, 26 Figures, 4 jpeg- and 3 gif-Fig-files include

    The Number Of Magnetic Null Points In The Quiet Sun Corona

    Full text link
    The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from Fourier spectrum of the magnetogram. The spectral estimate, which assumes that the extrapolated field is random, homogeneous and has Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHO's MDI. The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum. This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise. The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode. After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 1.5 Mm, above every 322 square Mm patch of quiet Sun. Analysis of 562 quiet Sun magnetograms spanning the two latest solar minimum shows that the null point density is relatively constant with roughly 10% day-to-day variation. At heights above 1.5 Mm, the null point density decreases approximately as the inverse cube of height. The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 1.0e19 Mx distributed randomly with density n=0.007 per square Mm

    Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br., syn. Cenchrus americanus (L.) Morrone], is a staple food for over 90 million poor farmers in arid and semi-arid regions of sub-Saharan Africa and South Asia. We report the ~1.79 Gb genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. Resequencing analysis of 994 (963 inbreds of the highly cross-pollinated cultigen, and 31 wild accessions) provides insights into population structure, genetic diversity, evolution and domestication history. In addition we demonstrated the use of re-sequence data for establishing marker trait associations, genomic selection and prediction of hybrid performance and defining heterotic pools. The genome wide variations and abiotic stress proteome data are useful resources for pearl millet improvement through deploying modern breeding tools for accelerating genetic gains in pearl millet.publishersversionPeer reviewe
    corecore