1,047 research outputs found

    On the motifs distribution in random hierarchical networks

    Full text link
    The distribution of motifs in random hierarchical networks defined by nonsymmetric random block--hierarchical adjacency matrices, is constructed for the first time. According to the classification of U. Alon et al of network superfamilies by their motifs distributions, our artificial directed random hierarchical networks falls into the superfamily of natural networks to which the class of neuron networks belongs. This is the first example of ``handmade'' networks with the motifs distribution as in a special class of natural networks of essential biological importance.Comment: 7 pages, 5 figure

    Simulations and Measurements of the Background Encountered by a High-Altitude Balloon-Borne Experiment for Hard X-ray Astronomy

    Full text link
    We have modelled the hard X-ray background expected for a high-altitude balloon flight of the Energetic X-ray Telescope Experiment (EXITE2), an imaging phoswich detector/telescope for the 20--600 keV energy range. Photon and neutron-induced contributions to the background are considered. We describe the code and the results of a series of simulations with different shielding configurations. The simulated hard X-ray background for the actual flight configuration agrees reasonably well (within a factor of ∌\sim 2) with the results measured on the first flight of EXITE2 from Palestine, Texas. The measured background flux at 100 keV is ∌\sim 4 ×\times 10−4^{-4} counts cm−2^{-2} s−1^{-1} keV−1^{-1}.Comment: 17 pages Latex (uses aaspp4.sty) plus 7 postscript figures: available in file figs.tar.g

    Thermodynamic properties of ferromagnetic mixed-spin chain systems

    Full text link
    Using a combination of high-temperature series expansion, exact diagonalization and quantum Monte Carlo, we perform a complementary analysis of the thermodynamic properties of quasi-one-dimensional mixed-spin systems with alternating magnetic moments. In addition to explicit series expansions for small spin quantum numbers, we present an expansion that allows a direct evaluation of the series coefficients as a function of spin quantum numbers. Due to the presence of excitations of both acoustic and optical nature, the specific heat of a mixed-spin chain displays a double-peak-like structure, which is more pronounced for ferromagnetic than for antiferromagnetic intra-chain exchange. We link these results to an analytically solvable half-classical limit. Finally, we extend our series expansion to incorporate the single-ion anisotropies relevant for the molecular mixed-spin ferromagnetic chain material MnNi(NO2_{2})4_{4}(ethylenediamine)2_{2}, with alternating spins of magnitude 5/2 and 1. Including a weak inter-chain coupling, we show that the observed susceptibility allows for an excellent fit, and the extraction of microscopic exchange parameters.Comment: 8 pages including 7 figures, submitted to Phys. Rev. B; series extended to 29th. QMC adde

    The Net Global Effects of Alternative U.S. Biofuel Mandates

    Get PDF
    One of the declared objectives of U.S. biofuel policy is the reduction of greenhouse gas (GHG) emissions from fossil fuel combustion, but many studies have questioned whether such a reduction would actually occur and, if so, how large it would be. This report describes the global market, land use, GHG emissions, and nitrogen use impacts of the U.S. Renewable Fuel Standard (RFS2) and several alternative biofuel policy designs, which differ in terms of mandate magnitude and feedstock composition, over the 2010-2030 period

    Slavnov-Taylor identities in Coulomb gauge Yang-Mills theory

    Full text link
    The Slavnov-Taylor identities of Coulomb gauge Yang-Mills theory are derived from the (standard, second order) functional formalism. It is shown how these identities form closed sets from which one can in principle fully determine the Green's functions involving the temporal component of the gauge field without approximation, given appropriate input.Comment: 20 pages, no figure

    76 T dwarfs from the UKIDSS LAS : benchmarks, kinematics and an updated space density

    Get PDF
    We report the discovery of 76 new T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Near-infrared broad- and narrow-band photometry and spectroscopy are presented for the new objects, along with Wide-field Infrared Survey Explorer (WISE) and warm-Spitzer photometry. Proper motions for 128 UKIDSS T dwarfs are presented from a new two epoch LAS proper motion catalogue. We use these motions to identify two new benchmark systems: LHS 6176AB, a T8p+M4 pair and HD 118865AB, a T5.5+F8 pair. Using age constraints from the primaries and evolutionary models to constrain the radii, we have estimated their physical properties from their bolometric luminosity. We compare the colours and properties of known benchmark T dwarfs to the latest model atmospheres and draw two principal conclusions. First, it appears that the H - [4.5] and J - W2 colours are more sensitive to metallicity than has previously been recognized, such that differences in metallicity may dominate over differences in T-eff when considering relative properties of cool objects using these colours. Secondly, the previously noted apparent dominance of young objects in the late-T dwarf sample is no longer apparent when using the new model grids and the expanded sample of late-T dwarfs and benchmarks. This is supported by the apparently similar distribution of late-T dwarfs and earlier type T dwarfs on reduced proper motion diagrams that we present. Finally, we present updated space densities for the late-T dwarfs, and compare our values to simulation predictions and those from WISE.Peer reviewe

    Flavour and Collider Interplay for SUSY at LHC7

    Get PDF
    The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb−1^{-1} run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a Seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as Bs→ΌΌB_s\to\mu\mu and Ό→eÎł\mu\to e\gamma. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models.Comment: 44 pages, 15 figures; v3: minor corrections, added references, updated figures. Version accepted for publicatio

    4pi Models of CMEs and ICMEs

    Full text link
    Coronal mass ejections (CMEs), which dynamically connect the solar surface to the far reaches of interplanetary space, represent a major anifestation of solar activity. They are not only of principal interest but also play a pivotal role in the context of space weather predictions. The steady improvement of both numerical methods and computational resources during recent years has allowed for the creation of increasingly realistic models of interplanetary CMEs (ICMEs), which can now be compared to high-quality observational data from various space-bound missions. This review discusses existing models of CMEs, characterizing them by scientific aim and scope, CME initiation method, and physical effects included, thereby stressing the importance of fully 3-D ('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication in Solar Physics (SUN-360 topical issue
    • 

    corecore