47 research outputs found
Slater-Pauling Behavior of the Half-Ferromagnetic Full-Heusler Alloys
Using the full-potential screened Korringa-Kohn-Rostoker method we study the
full-Heusler alloys based on Co, Fe, Rh and Ru. We show that many of these
compounds show a half-metallic behavior, however in contrast to the
half-Heusler alloys the energy gap in the minority band is extremely small.
These full-Heusler compounds show a Slater-Pauling behavior and the total
spin-magnetic moment per unit cell (M_t) scales with the total number of
valence electrons (Z_t) following the rule: M_t=Z_t-24. We explain why the
spin-down band contains exactly 12 electrons using arguments based on the group
theory and show that this rule holds also for compounds with less than 24
valence electrons. Finally we discuss the deviations from this rule and the
differences compared to the half-Heusler alloys.Comment: 10 pages, 8 figures, revised figure 3, new text adde
Generalised second law of thermodynamics for interacting dark energy in the DGP brane world
In this paper, we investigate the validity of the generalized second law of
thermodynamics (GSLT) in the DGP brane world when universe is filled with
interacting two fluid system: one in the form of cold dark matter and other is
holographic dark energy. The boundary of the universe is assumed to be enclosed
by the dynamical apparent horizon or the event horizon. The universe is chosen
to be homogeneous and isotropic FRW model and the validity of the first law has
been assumed here
Kalb-Ramond excitations in a thick-brane scenario with dilaton
We compute the full spectrum and eigenstates of the Kalb-Ramond field in a
warped non-compact Randall-Sundrum -type five-dimensional spacetime in which
the ordinary four-dimensional braneworld is represented by a sine-Gordon
soliton. This 3-brane solution is fully consistent with both the warped
gravitational field and bulk dilaton configurations. In such a background we
embed a bulk antisymmetric tensor field and obtain, after reduction, an
infinite tower of normalizable Kaluza-Klein massive components along with a
zero-mode. The low lying mass eigenstates of the Kalb-Ramond field may be
related to the axion pseudoscalar. This yields phenomenological implications on
the space of parameters, particularly on the dilaton coupling constant. Both
analytical and numerical results are given.Comment: 10 pages, 13 figures, and 2 tables. Final version to appear in The
European Physical Journal
The growth factor of matter perturbations in an f(R) gravity
The growth of matter perturbations in the model proposed by
Starobinsky is studied in this paper. Three different parametric forms of the
growth index are considered respectively and constraints on the model are
obtained at both the and confidence levels, by using the
current observational data for the growth factor. It is found, for all the
three parametric forms of the growth index examined, that the Starobinsky model
is consistent with the observations only at the confidence level.Comment: 15 pages, 5 figure
Cosmological perturbations in SFT inspired non-local scalar field models
We study cosmological perturbations in models with a single non-local scalar
field originating from the string field theory description of the rolling
tachyon dynamics. We construct the equation for the energy density
perturbations of the non-local scalar field and explicitly prove that for the
free field it is identical to a system of local cosmological perturbation
equations in a particular model with multiple (maybe infinitely many) local
free scalar fields.Comment: 21 pages, no figures, v3: presentation improved, results unchanged,
references adde
Measurement of Z0 decays to hadrons, and a precise determination of the number of neutrino species
We have made a precise measurement of the cross section for e+e--->Z0-->hadrons with the L3 detector at LEP, covering the range from 88.28 to 95.04 GeV. From a fit to the Z0 mass, total width, and the hadronic cross section to be MZ0=91.160 +/- 0.024 (experiment) +/-0.030(LEP) GeV, [Gamma]Z0=2.539+/-0.054 GeV, and [sigma]h(MZ0)=29.5+/-0.7 nb. We also used the fit to the Z0 peak cross section and the width todetermine [Gamma]invisible=0.548+/-0.029 GeV, which corresponds to 3.29+/-0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4[sigma] confidence level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28683/3/0000500.pd
A measurement of the Z0 leptonic partial widths and the vector and axial vector coupling constants
We have measured the partial widths of the Z0 into lepton pairs, and the forward-backward charge asymmetry for the process e+e--->[mu]+[mu]- using the L3 detector at LEP. We obtain an average [Gamma]ll of 83.0+/-2.1+/-1.1 MeV.From this result and the asymmetry measurement, we extract the values of the vector and axial vector couplings of the Z0 to leptons: grmv=-0.066-0.027+0.046 and grmA= -0.495-0.007+0.007.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28666/3/0000483.pd