8 research outputs found

    Co-invaders: The effects of alien parasites on native hosts

    Get PDF
    We define co-introduced parasites as those which have been transported with an alien host to a new locality, outside of their natural range, and co-invading parasites as those which have been co-introduced and then spread to new, native hosts. Of 98 published studies of co-introductions, over 50% of hosts were freshwater fishes and 49% of parasites were helminths. Although we would expect parasites with simple, direct life cycles to be much more likely to be introduced and establish in a new locality, a substantial proportion (36%) of co-introductions were of parasites with an indirect life cycle. Seventy-eight per cent of co-introduced parasites were found in native host species and can therefore be classed as co-invaders. Host switching was equally common among parasites with direct and indirect life cycles. The magnitude of the threat posed to native species by co-invaders will depend, among other things, on parasite virulence. In 16 cases where co-introduced parasites have switched to native hosts and information was available on relative virulence, 14 (85%) were more virulent in native hosts than in the co-introduced alien host. We argue that this does not necessarily support the naïve host theory that co-invading parasites will have greater pathogenic effects in native hosts with which they have no coevolutionary history, but may instead be a consequence of the greater likelihood for parasites with lower virulence in their natural host to be co-introduced

    Identification of extracolonic pathologies by computed tomographic colonography in colorectal cancer symptomatic patients

    No full text
    BACKGROUND & AIMS: Symptoms suggestive of colorectal cancer may originate outside the colorectum. Computed tomographic colonography (CTC) is used to examine the colorectum and abdominopelvic organs simultaneously. We performed a prospective randomized controlled trial to quantify the frequency, nature, and consequences of extracolonic findings. METHODS: We studied 5384 patients from 21 UK National Health Service hospitals referred by their family doctor for the investigation of colorectal cancer symptoms from March 2004 through December 2007. The patients were assigned randomly to groups that received the requested test (barium enema or colonoscopy, n = 3574) or CTC (n = 1810). We determined the frequency and nature of extracolonic findings, subsequent investigations, ultimate diagnosis, and extracolonic cancer diagnoses 1 and 3 years after testing patients without colorectal cancer. RESULTS: Extracolonic pathologies were detected in 959 patients by CTC (58.7%), in 42 patients by barium enema analysis (1.9%), and in no patients by colonoscopy. Extracolonic findings were investigated in 142 patients (14.2%) and a diagnosis was made for 126 patients (88.1%). Symptoms were explained by extracolonic findings in 4 patients analyzed by barium enema (0.2%) and in 33 patients analyzed by CTC (2.8%). CTC identified 72 extracolonic neoplasms, however, barium enema analysis found only 3 (colonoscopy found none). Overall, CTC diagnosed extracolonic neoplasms in 72 of 1634 patients (4.4%); 26 of these were malignant (1.6%). There were significantly more extracolonic malignancies detected than expected 1 year after examination, but these did not differ between patients evaluated by CTC (22.2/1000 person-years), barium enema (26.5/1000 person-years; P = .43), or colonoscopy (32.0/1000 person-years; P = .88). CONCLUSIONS: More than half of the patients with symptoms of colorectal cancer are found to have extracolonic pathologies by CTC analysis. However, the proportion of patients found to have extracolonic malignancies after 1 year of CTC examination is not significantly greater than after barium enema or colonoscopy examinations. International Standard Randomised Controlled Trials no: 95152621.isrctn.com

    Magnetospheric Science Objectives of the Juno Mission

    Full text link
    In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and enture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets

    Identification of Extracolonic Pathologies by Computed Tomographic Colonography in Colorectal Cancer Symptomatic Patients

    No full text

    Pharmacological and Therapeutic Aspects of Plants from the Genus Ferula: A Comprehensive Review

    No full text

    1. Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions

    No full text

    Saturn Plasma Sources and Associated Transport Processes

    No full text
    corecore