14 research outputs found

    Defining the scope for altering rice leaf anatomy to improve photosynthesis: a modelling approach

    Get PDF
    Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2. We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis

    Cigarette smoke-induced transgenerational alterations in genome stability in cord blood of human F1 offspring

    No full text
    The relevance of preconceptional and prenatal toxicant exposures for genomic stability in offspring is difficult to analyze in human populations, because gestational exposures usually cannot be separated from preconceptional exposures. To analyze the roles of exposures during gestation and conception on genomic stability in the offspring, stability was assessed via the Comet assay and highly sensitive, semiautomated confocal laser scans of gammaH2AX foci in cord, maternal, and paternal blood as well as spermatozoa from 39 families in Crete, Greece, and the United Kingdom. With use of multivariate linear regression analysis with backward selection, preconceptional paternal smoking (% tail DNA: P>0.032; gammaH2AX foci: P>0.018) and gestational maternal (% tail DNA: P>0.033) smoking were found to statistically significantly predict DNA damage in the cord blood of F1 offspring. Maternal passive smoke exposure was not identified as a predictor of DNA damage in cord blood, indicating that the effect of paternal smoking may be transmitted via the spermatozoal genome. Taken together, these studies reveal a role for cigarette smoke in the induction of DNA alterations in human F1 offspring via exposures of the fetus in utero or the paternal germline. Moreover, the identification of transgenerational DNA alterations in the unexposed F1 offspring of smoking-exposed fathers supports the claim that cigarette smoke is a human germ cell mutagen

    The Acculturated Brain

    No full text
    Recent decades have been marked by a steadily increasing emphasis on neural determinants of behavior. Concerns with socio-cultural processes have simultaneously been diminished. Given the significance of this shift toward a cortical explanation of human behavior-in terms of both the direction of research in psychology and the implications of this research for social practices and policy-critical reflection is essential. In particular, when significant conceptual flaws are brought into focus, we find good reason to reconsider the significance of sociocultural process. And, when we take into account major vistas of neuropsychological research, the conclusion becomes evident that not only is human action unintelligible in terms of neural activity, but the brain primarily functions in the service of cultural process. To be sure, cortical functioning may both enable and limit human activity. However, given the enormous variation in human conduct, and the dependency of such conduct on the generation of cultural meaning, the most promising conclusion, both for research and for societal practice, is to view the brain chiefly as an instrument for achieving socially originated ends. This is not to argue against inquiry into brain functioning, but to be more judicious about the domains of its utility, and critical in terms of what it offers for understanding human action

    Low penetrance susceptibility to glioma is caused by the TP53 variant rs78378222.

    Get PDF
    Background: Most of the heritable risk of glioma is presently unaccounted for by mutations in known genes. In addition to rare inactivating germline mutations in TP53 causing glioma in the context of the Li-Fraumeni syndrome, polymorphic variation in TP53 may also contribute to the risk of developing glioma. Methods: To comprehensively evaluate the impact of variation in TP53 on risk, we analysed 23 tagSNPs and imputed 2377 unobserved genotypes in four series totaling 4147 glioma cases and 7435 controls. Results: The strongest validated association signal was shown by the imputed single-nucleotide polymorphism (SNP) rs78378222 (P = 6.86 x 10(-24), minor allele frequency similar to 0.013). Confirmatory genotyping confirmed the high quality of the imputation. The association between rs78378222 and risk was seen for both glioblastoma multiforme (GBM) and non- GBM tumours. We comprehensively examined the relationship between rs78378222 and overall survival in two of the case series totaling 1699 individuals. Despite employing statistical tests sensitive to the detection of differences in early survival, no association was shown. Conclusion: Our data provided strong validation of rs78378222 as a risk factor for glioma but do not support the tenet that the polymorphism being a clinically useful prognostic marker. Acquired TP53 inactivation is a common feature of glioma. As rs78378222 changes the polyadenylation signal of TP53 leading to impaired 3'-end processing of TP53 mRNA, the SNP has strong plausibility for being directly functional contributing to the aetiological basis of glioma
    corecore