366 research outputs found

    Habitat fragmentation and species diversity in competitive communities

    Get PDF
    Habitat loss is one of the key drivers of the ongoing decline of biodiversity. However, ecologists still argue about how fragmentation of habitat (independent of habitat loss) affects species richness. The recently proposed habitat amount hypothesis posits that species richness only depends on the total amount of habitat in a local landscape. In contrast, empirical studies report contrasting patterns: some find positive and others negative effects of fragmentation per se on species richness. To explain this apparent disparity, we devise a stochastic, spatially explicit model of competitive species communities in heterogeneous habitats. The model shows that habitat loss and fragmentation have complex effects on species diversity in competitive communities. When the total amount of habitat is large, fragmentation per se tends to increase species diversity, but if the total amount of habitat is small, the situation is reversed: fragmentation per se decreases species diversity.Peer reviewe

    Angiotensin-Converting Enzyme (ACE) Inhibitors in Heart Failure: Reducing Mortality and Costs to the NHS

    Get PDF

    Survival-Time Distribution for Inelastic Collapse

    Full text link
    In a recent publication [PRL {\bf 81}, 1142 (1998)] it was argued that a randomly forced particle which collides inelastically with a boundary can undergo inelastic collapse and come to rest in a finite time. Here we discuss the survival probability for the inelastic collapse transition. It is found that the collapse-time distribution behaves asymptotically as a power-law in time, and that the exponent governing this decay is non-universal. An approximate calculation of the collapse-time exponent confirms this behaviour and shows how inelastic collapse can be viewed as a generalised persistence phenomenon.Comment: 4 pages, RevTe

    Wigner Surmise For Domain Systems

    Full text link
    In random matrix theory, the spacing distribution functions p(n)(s)p^{(n)}(s) are well fitted by the Wigner surmise and its generalizations. In this approximation the spacing functions are completely described by the behavior of the exact functions in the limits s->0 and s->infinity. Most non equilibrium systems do not have analytical solutions for the spacing distribution and correlation functions. Because of that, we explore the possibility to use the Wigner surmise approximation in these systems. We found that this approximation provides a first approach to the statistical behavior of complex systems, in particular we use it to find an analytical approximation to the nearest neighbor distribution of the annihilation random walk

    Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    Get PDF
    Changes to climate-carbon cycle feedbacks may significantly affect the Earth System’s response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth System Models (ESMs). Here, we construct a stylized global climate-carbon cycle model, test its output against complex ESMs, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon-cycle feedbacks and the operation of the carbon cycle. We use our results to analytically study the relative strengths of different climate-carbon cycle feedbacks and how they may change in the future, as well as to compare different feedback formalisms. Simple models such as that developed here also provide "workbenches" for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the Planetary Boundaries, that are currently too uncertain to be included in complex ESMs

    Synchronization and Coarsening (without SOC) in a Forest-Fire Model

    Full text link
    We study the long-time dynamics of a forest-fire model with deterministic tree growth and instantaneous burning of entire forests by stochastic lightning strikes. Asymptotically the system organizes into a coarsening self-similar mosaic of synchronized patches within which trees regrow and burn simultaneously. We show that the average patch length grows linearly with time as t-->oo. The number density of patches of length L, N(L,t), scales as ^{-2}M(L/), and within a mean-field rate equation description we find that this scaling function decays as e^{-1/x} for x-->0, and as e^{-x} for x-->oo. In one dimension, we develop an event-driven cluster algorithm to study the asymptotic behavior of large systems. Our numerical results are consistent with mean-field predictions for patch coarsening.Comment: 5 pages, 4 figures, 2-column revtex format. To be submitted to PR

    Reaction Front in an A+B -> C Reaction-Subdiffusion Process

    Full text link
    We study the reaction front for the process A+B -> C in which the reagents move subdiffusively. Our theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to check our theoretical results, describing the simulations in some detail because the rules necessarily differ in important respects from those used in diffusive processes. Comparisons between theory and simulations are on the whole favorable, with the most difficult quantities to capture being those that involve very small numbers of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the production profile of product and its width, as well as the reactant concentrations at the center of the reaction zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in particular its unusual behavior at the center of the reaction zone

    Fraction of uninfected walkers in the one-dimensional Potts model

    Full text link
    The dynamics of the one-dimensional q-state Potts model, in the zero temperature limit, can be formulated through the motion of random walkers which either annihilate (A + A -> 0) or coalesce (A + A -> A) with a q-dependent probability. We consider all of the walkers in this model to be mutually infectious. Whenever two walkers meet, they experience mutual contamination. Walkers which avoid an encounter with another random walker up to time t remain uninfected. The fraction of uninfected walkers is investigated numerically and found to decay algebraically, U(t) \sim t^{-\phi(q)}, with a nontrivial exponent \phi(q). Our study is extended to include the coupled diffusion-limited reaction A+A -> B, B+B -> A in one dimension with equal initial densities of A and B particles. We find that the density of walkers decays in this model as \rho(t) \sim t^{-1/2}. The fraction of sites unvisited by either an A or a B particle is found to obey a power law, P(t) \sim t^{-\theta} with \theta \simeq 1.33. We discuss these exponents within the context of the q-state Potts model and present numerical evidence that the fraction of walkers which remain uninfected decays as U(t) \sim t^{-\phi}, where \phi \simeq 1.13 when infection occurs between like particles only, and \phi \simeq 1.93 when we also include cross-species contamination.Comment: Expanded introduction with more discussion of related wor

    Persistence of a Continuous Stochastic Process with Discrete-Time Sampling: Non-Markov Processes

    Full text link
    We consider the problem of `discrete-time persistence', which deals with the zero-crossings of a continuous stochastic process, X(T), measured at discrete times, T = n(\Delta T). For a Gaussian Stationary Process the persistence (no crossing) probability decays as exp(-\theta_D T) = [\rho(a)]^n for large n, where a = \exp[-(\Delta T)/2], and the discrete persistence exponent, \theta_D, is given by \theta_D = \ln(\rho)/2\ln(a). Using the `Independent Interval Approximation', we show how \theta_D varies with (\Delta T) for small (\Delta T) and conclude that experimental measurements of persistence for smooth processes, such as diffusion, are less sensitive to the effects of discrete sampling than measurements of a randomly accelerated particle or random walker. We extend the matrix method developed by us previously [Phys. Rev. E 64, 015151(R) (2001)] to determine \rho(a) for a two-dimensional random walk and the one-dimensional random acceleration problem. We also consider `alternating persistence', which corresponds to a < 0, and calculate \rho(a) for this case.Comment: 14 pages plus 8 figure

    Random Walks in Logarithmic and Power-Law Potentials, Nonuniversal Persistence, and Vortex Dynamics in the Two-Dimensional XY Model

    Full text link
    The Langevin equation for a particle (`random walker') moving in d-dimensional space under an attractive central force, and driven by a Gaussian white noise, is considered for the case of a power-law force, F(r) = - Ar^{-sigma}. The `persistence probability', P_0(t), that the particle has not visited the origin up to time t, is calculated. For sigma > 1, the force is asymptotically irrelevant (with respect to the noise), and the asymptotics of P_0(t) are those of a free random walker. For sigma < 1, the noise is (dangerously) irrelevant and the asymptotics of P_0(t) can be extracted from a weak noise limit within a path-integral formalism. For the case sigma=1, corresponding to a logarithmic potential, the noise is exactly marginal. In this case, P_0(t) decays as a power-law, P_0(t) \sim t^{-theta}, with an exponent theta that depends continuously on the ratio of the strength of the potential to the strength of the noise. This case, with d=2, is relevant to the annihilation dynamics of a vortex-antivortex pair in the two-dimensional XY model. Although the noise is multiplicative in the latter case, the relevant Langevin equation can be transformed to the standard form discussed in the first part of the paper. The mean annihilation time for a pair initially separated by r is given by t(r) \sim r^2 ln(r/a) where a is a microscopic cut-off (the vortex core size). Implications for the nonequilibrium critical dynamics of the system are discussed and compared to numerical simulation results.Comment: 10 pages, 1 figur
    • …
    corecore