8 research outputs found

    Drying colloidal systems: laboratory models for a wide range of applications

    Get PDF
    The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art

    Neutrinoless Double Beta Decay

    No full text
    This White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper

    Neutrinoless Double Beta Decay

    No full text
    This White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper

    Neutrinoless Double Beta Decay

    No full text
    International audienceThis White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper

    Neutrinoless Double Beta Decay

    No full text
    This White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper

    Neutrinoless Double Beta Decay

    No full text
    This White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper
    corecore