52 research outputs found
Detection potential to point-like neutrino sources with the NEMO-km3 telescope
The NEMO Collaboration is conducting an R&D activity towards the construction
of a Mediterranean km3 neutrino telescope. In this work, we present the results
of Monte Carlo simulation studies on the capability of the proposed NEMO
telescope to detect and identify point-like sources of high energy muon
neutrinos.Comment: To be published on BCN06 proceedings (Barcelona, July 4-7, 2006
The optical module of the Baikal deep underwater neutrino telescope
A deep underwater Cherenkov telescope has been operating since 1993 in stages
of growing size at 1.1 km depth in Lake Baikal. The key component of the
telescope is the Optical Module (OM) which houses the highly sensitive
phototube QUASAR-370. We describe design and parameters of the QUASAR-370, the
layout of the optical module, the front-end electronics and the calibration
procedures, and present selected results from the five-year operation
underwater. Also, future developments with respect to a telescope consisting
from several thousand OMs are discussed.Comment: 30 pages, 24 figure
Status of the Lake Baikal Experiment
We review the present status of the Baikal Underwater Neutrino Experiment and
report on neutrino events recorded with the detector stages NT-36 and NT-96.Comment: 5 pages, 4 PostScript figures, uses here.sty and mine.sty, submitted
to the Proc. of 5th Int. Workshop on Topics in Astroparticle and Underground
Physics (LNGS INFN, Assergi, September 7-11, 1997
Registration of atmospheric neutrinos with the Baikal neutrino telescope
We present first neutrino induced events observed with a deep underwater
neutrino telescope. Data from 70 days effective life time of the BAIKAL
prototype telescope NT-96 have been analyzed with two different methods. With
the standard track reconstruction method, 9 clear upward muon candidates have
been identified, in good agreement with 8.7 events expected from Monte Carlo
calculations for atmospheric neutrinos. The second analysis is tailored to
muons coming from close to the opposite zenith. It yields 4 events, compared to
3.5 from Monte Carlo expectations. From this we derive a 90 % upper flux limit
of 1.1 * 10^-13 cm^-2 sec^-1 for muons in excess of those expected from
atmospheric neutrinos with zenith angle > 150 degrees and energy > 10GeV.Comment: 20 pages, 11 figure
The Lake Baikal neutrino experiment
We rewiew the present status of the Baikal Neutrino Project and present the
results of a search for high energy neutrinos with the detector intermediate
stage NT-96.Comment: 3 pages, 2 figures, to appear in the Proceedings of Sixth
International Workshop on Topics in Astroparticle and Underground Physics
(TAUP99), September 6-10, 1999, Pais, Franc
The Baikal Deep Underwater Neutrino Experiment: Results, Status, Future
We review the present status of the Baikal Underwater Neutrino Experiment and
present results obtained with the various stages of the stepwise increasing
detector: NT-36 (1993-95), NT-72 (1995-96) and NT-96 (1996-97). Results cover
atmospheric muons, first clear neutrino events, search for neutrinos from WIMP
annihilation in the center of the Earth, search for magnetic monopoles, and --
far from astroparticle physics -- limnology.Comment: Talk given at the Int. School on Nuclear Physics, Erice, Sept.199
Sensitivity of the Baikal neutrino telescope NT-200 to point sources of very high energy neutrinos
SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
- …