48 research outputs found

    Narrow Line X-Ray Calibration Source for High Resolution Microcalorimeters

    Get PDF
    We are developing a narrow line calibration source for use with X-ray microcalorimeters. At energies below 300 electronvolts fluorescent lines are intrinsically broad, making calibration of high resolution detectors difficult. This source consists of a 405 nanometers (3 electronvolts) laser diode coupled to an optical fiber. The diode is pulsed to create approximately one hundred photons in a few microseconds. If the pulses are short compared to the rise time of the detector, they will be detected as single events with a total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse create a comb of X-ray lines with 3 electronvolts spacing, so detectors with energy resolution better than 2 electronvolts are required to resolve the individual lines. Our currently unstabilized diode has a multimode width less than 1 nanometer, giving a 300 electronvolt event a Full width at half maximum (FWHM) less than 0.1 electronvolts. By varying the driving voltage, or pulse width, the source can produce a comb centered on a wide range of energies. The calibration events are produced at precisely known times. This allows continuous calibration of a flight mission without contaminating the observed spectrum and with minimal deadtime

    PAPPA: Primordial Anisotropy Polarization Pathfinder Array

    Get PDF
    The Primordial Anisotropy Polarization Pathfinder Array (PAPPA) is a balloon-based instrument to measure the polarization of the cosmic microwave background and search for the signal from gravity waves excited during an inflationary epoch in the early universe. PAPPA will survey a 20 x 20 deg patch at the North Celestial Pole using 32 pixels in 3 passbands centered at 89, 212, and 302 GHz. Each pixel uses MEMS switches in a superconducting microstrip transmission line to combine the phase modulation techniques used in radio astronomy with the sensitivity of transition-edge superconducting bolometers. Each switched circuit modulates the incident polarization on a single detector, allowing nearly instantaneous characterization of the Stokes I, Q, and U parameters. We describe the instrument design and status.Comment: 12 pages, 9 figures. Proceedings of the Fundamental Physics With CMB workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy Review

    Fabrication of an Antenna-Coupled Bolometer for Cosmic Microwave Background Polarimetry

    Get PDF
    We describe the development of a detector for precise measurements of the cosmic microwave background polarization. The detector employs a waveguide to couple light between a pair of Mo/Au superconducting transition edge sensors (TES) and a feedhorn. Incorporation of an on-chip ortho-mode transducer (OMT) results in high isolation. The OMT is micromachined and bonded to the microstrip and TES circuits in a low temperature wafer bonding process. The wafer bonding process incorporates a buried superconducting niobium layer with a single crystal silicon layer which serves as the leg isolated TES membrane and as the microstrip dielectric. We describe the micromachining and wafer bonding process and report measurement results of the microwave circuitry operating in the 29-43GHz band along with Johnson noise measurements of the TES membrane structures and development of Mo/Au TES operating under '00mK

    The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. PIXIE will map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology and Astroparticle Physic

    Cianoacrilato na colagem de Bráquetes ortodônticos em resina acrílica: há maior adesão?

    Get PDF
    Pacientes em tratamento ortodôntico apresentam restaurações provisórias com frequência. No entanto, poucos estudos avaliam a influência dos adesivos na resistência ao cisalhamento dos bráquetes nessas superfícies. A resina acrílica é comumente indicada para colagem de bráquetes, porém o uso do cianoacrilato como adesivo ortodôntico é uma opção analisada. O objetivo do presente trabalho foi avaliar o desempenho do cianoacrilato associado aos materiais comumente utilizados para a fixação de bráquetes metálicos em restaurações provisórias de resina acrílica. Quarenta amostras em resina acrílica foram preparadas e as superfícies homogeinizadas com lixas de carboneto de silício (320 e 600). Em seguida, as amostras foram divididas aleatoriamente em quatro grupos (n=10) com base no tratamento de superfície e agente de união: G1 - bráquetes colados com resina acrílica; G2 - bráquetes colados com resina acrílica e aplicação de cianoacrilato; G3 - bráquetes colados com Transbond(tm) XT; G4 - bráquetes colados com Transbond(tm) XT e aplicação de cianoacrilato. Foram utilizados bráquetes ortodônticos de aço inoxidável, prescrição Roth, Kirium (3M/Abzil) para incisivos centrais superiores direitos, slot 022. Após colagem, as amostras foram submetidas ao teste de cisalhamento a uma velocidade de 0,5mm/min em uma máquina de ensaios universal (EMIC DL-1000). Os dados foram coletados e submetidos à análise estatística pelo teste ANOVA com nível de significância de 5%. A associação de resina acrílica ao cianoacrilato (G2) resultou na maior resistência ao cisalhamento (13,76 MPa), mas não significativa em comparação aos valores obtidos para a resina acrílica (G1= 7,76 MPa). O mesmo pôde ser observado para a associação Transbond(tm) XT e cianoacrilato (G4= 4,03 MPa) em relação a utilização da Transbond(tm) XT de forma isolada (G3= 3,87 MPa) e resina acrílica. O tratamento de superfície tem efeito significativo na resistência da união dos bráquetes colados aos materiais provisórios. A associação de cianoacrilato ao monômero de metilmetacrilato apresentou maior resistência ao cisalhamento, sendo mais indicada clinicamente

    The Origins Space Telescope

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryo cooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8 20 m wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 m. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25 588 m, make wide-area and deep spectroscopic surveys with spectral resolving power R ~ 300, and pointed observations at R ~ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins natural background limited sensitivity

    Dust in Supernovae and Supernova Remnants II: Processing and survival

    Get PDF
    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations
    corecore