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Abstract We are developing a narrow line calibration source for use with X-ray
microcalorimeters. At energies below 300 eV fluorescent lines are intrinsically broad,
making calibration of high resolution detectors difficult. This source consists of a
405 nm (3 eV) laser diode coupled to an optical fiber. The diode is pulsed to create
approximately one hundred photons in a few microseconds. If the pulses are short
compared to the rise time of the detector, they will be detected as single events with a
total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse
create a comb of X-ray lines with 3 eV spacing, so detectors with energy resolution
better than 2 eV are required to resolve the individual lines. Our currently unstabilized
diode has a multimode width less than 1 nm, giving a 300 eV event a FWHM less
than 0.1 eV. By varying the driving voltage, or pulse width, the source can produce
a comb centered on a wide range of energies. The calibration events are produced at
precisely known times. This allows continuous calibration of a flight mission without
contaminating the observed spectrum and with minimal deadtime.

Keywords Microcalorimeters · Calibration · Fiber-optics · Lasers · X-ray detectors

1 Introduction

We are currently developing an array with 1 eV FWHM in the few hundred eV range for
the study of astrophysical plasmas near 106 K [1]. 1–2 eV FWHM is needed even for
line identification in this spectral range, but there is no way of verifying this resolution
with fluorescent line calibrators. The atomic fluorescent lines normally used for in situ
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Table 1 Performance requirements for the laser diode for different applications

Requirements Long term stability Laser line width

Mission
type

X-ray
energy
(eV)

Detector
resolution
(FWHM eV)

Calibrator
accuracy
requirements
(eV)

Line width
requirements
(FWHM eV)

�λ

(nm)
�f
(GHz)

�λ

(FWHm
nm)

�f
(FWHm
THz)

Rocket EXP 300 1 0.1 0.2 0.14 250 3 5

IXO-Class 6,000 2 0.02 0.4 0.0014 2.5 1.2 2

calibration are much too broad at low energies where the upper levels in the transition
are involved in chemical bonding. At higher energies even the well-isolated 5.9 keV
Mn Kα line popularly used for evaluating X-ray detectors is so much broader than the
best current detectors that it is very difficult to determine their resolution precisely.

The high spectral resolution combined with high throughput of cryogenic
microcalorimeters promises to revolutionize X-ray astronomy. However, achieving
high performance with these detectors requires calibration with matching precision
and this is becoming increasingly difficult at the present state of the art. The excellent
line profiles and high throughput of these detectors allows line centroids to be deter-
mined to a small fraction of the detector resolution, making sensitive measurement
of Doppler shifts possible if the absolute energy calibration is comparably well deter-
mined. Line width measurements give valuable astronomical information on thermal
and turbulent broadening but require accurate knowledge of the detector line profiles.
Observations normally extend over long periods of time where orbital conditions vary
and produce small changes in detector performance, so in situ calibration is required.
Large laboratory monochromators have the necessary performance and are used for
calibrations on the ground, but flying these instruments is not feasible. Table 1 shows
ideal calibration requirements to maximize the performance of rocket [1] and IXO-
Class [2] missions and the laser characteristics that will meet them.

The pulsed diode source is also very useful for generating the large amount of
calibration data needed for preparing optimal filters for nonlinear detectors with non-
stationary noise [3]. Events can be provided over a wide range of evenly spaced ener-
gies, and eliminating sampling phase error by synchronizing the events with signal
digitization greatly simplifies the processing.

2 Construction and Operation

The laser diodes are the type used in ‘Blu-Ray’ optical disk players. Readily available
sources do not provide well characterized devices, but most of the diodes we have
obtained appeared similar and were usually rated at 20 mW. As supplied, they run
multimode, and we checked to be sure the FWHM was less than 1 nm. An optical
fiber is glued to the glass window of the diode using a clear epoxy (see Fig. 1). The fiber
is used to transmit the light from the room temperature stage of the dewar through
the colder stages as shown in Fig. 2. An infrared filter mounted to the 4 K shield
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Fig. 1 Laser diode with the optical fiber attached. (Color figure online)

Fig. 2 Current configuration of the laser diode, optical fiber and infrared blocking filter in the dewar. (Color
figure online)

blocks any propagating thermal photons coupled into the fiber or generated in it in the
warmer parts of the dewar. The filter uses an infrared reflecting mirror and an infrared
absorbing filter in series. Both filters cut off at a wavelength of 750 nm. No lenses are
used, resulting in a geometrical loss of about 10−3 in feeding the output fiber. The
optical fiber has a 250 μm silica core. As long as an infrared filter is present the type
of fiber is not critical. The diode is pulsed to create a short burst of light with a total
absorbed energy equivalent to a soft X-ray photon. The pulses need to be shorter than
the rise time of the detectors in order for the pulse to have the same effect as one X-ray
photon. In the present test setup, about 2 eV is incident on each pixel per nanosecond
of pulse width. Figure 3 shows the open loop wavelength stability of our laser diode.
It is adequate for the rocket experiment, but would have to be externally stabilized for
an IXO-class application.
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Fig. 3 Wavelength stability of the diode versus temperature (left) and current (right). (Color figure online)

Fig. 4 Top 6 keV Mn Kα X-ray, middle 6 keV diode pulse, bottom voltage pulse across the diode. The
voltage pulse tail is below the threshold of the diode and contributed no light. The voltages are offset for
comparison. The traces were DC coupled and triggered off of the detector signal. (Color figure online)

3 Results and Conclusions

Figure 4 shows a 6 keV X-ray and a large diode pulse taken with a transition edge
sensor at the University of Wisconsin. The X-ray photon and diode pulses are indis-
tinguishable. Figure 5 shows the pulse height spectrum obtained at Goddard Space
Flight Center with a comb centered at about 12 eV on a high resolution TES array. The
detector is a Au/Mo transition edge sensor with 80 × 80 × 3.22 μm gold absorbers
that have less than 30 % reflectance at 405 nm [4]. It has a baseline FWHM of 0.75
eV. Tests are continuing with larger photon numbers to find the source of the low
energy shoulders which are causing the broadening of the calibration lines at higher
energies.
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Fig. 5 Pulse height spectrum from the laser diode using a high resolution array and small pulses. (Color
figure online)
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