3,533 research outputs found

    Baryon Junction Stopping at the SPS and RHIC via HIJING/B

    Get PDF
    Baryon stopping at the SPS and RHIC energies is calculated by introducing a new baryon junction mechanism into HIJING. The exchange of a baryon junction, according to Regge phenomenology, leads to a cosh(y/2) rapidity dependence and an s^(-1/4) energy dependence of the inclusive baryon cross section. This baryon junction dynamics also leads naturally to enhanced p_T broadening in pA and AA together with enhanced mid-rapidity hyperon production.Comment: Proceedings for Quark Matter 97; 4 pages, 1 eps-figur

    Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China

    Get PDF
    The Carnian Humid Episode (CHE), also known as the Carnian Pluvial Event, and associated biotic changes are major enigmas of the Mesozoic record in western Tethys. We show that the CHE also occurred in eastern Tethys (South China), suggestive of a much more widespread and probably global climate perturbation. Oxygen isotope records from conodont apatite indicate a double-pulse warming event. The CHE coincided with an initial warming of 4 °C. This was followed by a transient cooling period and then a prolonged ~7 °C warming in the later Carnian (Tuvalian 2). Carbon isotope perturbations associated with the CHE of western Tethys occurred contemporaneously in South China, and mark the start of a prolonged period of carbon cycle instability that persisted until the late Carnian. The dry-wet transition during the CHE coincides with the negative carbon isotope excursion and the temperature rise, pointing to an intensification of hydrologic cycle activities due to climatic warming. While carbonate platform shutdown in western Tethys is associated with an influx of siliciclastic sediment, the eastern Tethyan carbonate platforms are overlain by deep-water anoxic facies. The transition from oxygenated to euxinic facies was via a condensed, manganiferous carbonate (MnO content up to 15.1 wt%), that records an intense Mn shuttle operating in the basin. Significant siliciclastic influx in South China only occurred after the CHE climatic changes and was probably due to foreland basin development at the onset of the Indosinian Orogeny. The mid-Carnian biotic crisis thus coincided with several phenomena associated with major extinction events: a carbonate production crisis, climate warming, Ύ 13 C oscillations, marine anoxia, biotic turnover and flood basalt eruptions (of the Wrangellia Large Igneous Province)

    Complete genome sequence of Mesorhizobium sophorae ICMP 19535T, a highly specific, nitrogen-fixing symbiont of New Zealand endemic Sophora spp

    Get PDF
    We report here the complete genome sequence of Mesorhizobium sophorae ICMP 19535T. This strain was isolated from Sophora microphylla root nodules and can nodulate and fix nitrogen with this host and also with Sophora prostrata, Sophora longicarinata, and Clianthus puniceus. The genome consists of 8.05 Mb

    On the Adaptive Real-Time Detection of Fast-Propagating Network Worms

    Get PDF
    We present two light-weight worm detection algorithms thatoffer significant advantages over fixed-threshold methods.The first algorithm, RBS (rate-based sequential hypothesis testing)aims at the large class of worms that attempts to quickly propagate, thusexhibiting abnormal levels of the rate at which hosts initiateconnections to new destinations. The foundation of RBS derives fromthe theory of sequential hypothesis testing, the use of which fordetecting randomly scanning hosts was first introduced by our previouswork with the TRW (Threshold Random Walk) scan detection algorithm. The sequential hypothesistesting methodology enables engineering the detectors to meet falsepositives and false negatives targets, rather than triggering whenfixed thresholds are crossed. In this sense, the detectors that weintroduce are truly adaptive.We then introduce RBS+TRW, an algorithm that combines fan-out rate (RBS)and probability of failure (TRW) of connections to new destinations.RBS+TRW provides a unified framework that at one end acts as a pure RBSand at the other end as pure TRW, and extends RBS's power in detectingworms that scan randomly selected IP addresses

    A Knob for Changing Light Propagation from Subluminal to Superluminal

    Get PDF
    We show how the application of a coupling field connecting the two lower metastable states of a lambda-system can produce a variety of new results on the propagation of a weak electromagnetic pulse. In principle the light propagation can be changed from subluminal to superluminal. The negative group index results from the regions of anomalous dispersion and gain in susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.

    A Study of Parton Energy Loss in Au+Au Collisions at RHIC using Transport Theory

    Full text link
    Parton energy loss in Au+Au collisions at RHIC energies is studied by numerically solving the relativistic Boltzmann equation for the partons including 2↔22 \leftrightarrow 2 and 2→2+finalstateradiation2 \to 2 + final state radiation collision processes. Final particle spectra are obtained using two hadronization models; the Lund string fragmentation and independent fragmentation models. Recent, preliminary π0\pi^0 transverse momentum distributions from central Au+Au collisions at RHIC are reproduced using gluon-gluon scattering cross sections of 5-12 mb, depending upon the hadronization model. Comparisons with the HIJING jet quenching algorithm are made.Comment: 6 pages, 6 figures, attached files are replaced (wrong files were uploaded in version 1

    Two-loop approximation in the Coulomb blockade problem

    Full text link
    We study Coulomb blockade (CB) oscillations in the thermodynamics of a metallic grain which is connected to a lead by a tunneling contact with a large conductance g0g_0 in a wide temperature range, ECg04e−g0/2<T<ECE_Cg_0^4 e^{-g_0/2}<T<E_C, where ECE_C is the charging energy. Using the instanton analysis and the renormalization group we obtain the temperature dependence of the amplitude of CB oscillations which differs from the previously obtained results. Assuming that at T<ECg04e−g0/2T < E_Cg_0^4 e^{-g_0/2} the oscillation amplitude weakly depends on temperature we estimate the magnitude of CB oscillations in the ground state energy as ECg04e−g0/2E_Cg_0^4 e^{-g_0/2}.Comment: 10 pages, 3 figure

    Simplified amino acid alphabets based on deviation of conditional probability from random background

    Get PDF
    The primitive data for deducing the Miyazawa-Jernigan contact energy or BLOSUM score matrix consists of pair frequency counts. Each amino acid corresponds to a conditional probability distribution. Based on the deviation of such conditional probability from random background, a scheme for reduction of amino acid alphabet is proposed. It is observed that evident discrepancy exists between reduced alphabets obtained from raw data of the Miyazawa-Jernigan's and BLOSUM's residue pair counts. Taking homologous sequence database SCOP40 as a test set, we detect homology with the obtained coarse-grained substitution matrices. It is verified that the reduced alphabets obtained well preserve information contained in the original 20-letter alphabet.Comment: 9 pages,3figure

    Superluminal optical pulse propagation in nonlinear coherent media

    Get PDF
    The propagation of light-pulse with negative group-velocity in a nonlinear medium is studied theoretically. We show that the necessary conditions for these effects to be observable are realized in a three-level Λ\Lambda-system interacting with a linearly polarized laser beam in the presence of a static magnetic field. In low power regime, when all other nonlinear processes are negligible, the light-induced Zeeman coherence cancels the resonant absorption of the medium almost completely, but preserves the dispersion anomalous and very high. As a result, a superluminal light pulse propagation can be observed in the sense that the peak of the transmitted pulse exits the medium before the peak of the incident pulse enters. There is no violation of causality and energy conservation. Moreover, the superluminal effects are prominently manifested in the reshaping of pulse, which is caused by the intensity-dependent pulse velocity. Unlike the shock wave formation in a nonlinear medium with normal dispersion, here, the self-steepening of the pulse trailing edge takes place due to the fact that the more intense parts of the pulse travel slower. The predicted effect can be easily observed in the well known schemes employed for studying of nonlinear magneto-optical rotation. The upper bound of sample length is found from the criterion that the pulse self-steepening and group-advance time are observable without pulse distortion caused by the group-velocity dispersion.Comment: 16 pages, 7 figure
    • 

    corecore