10 research outputs found

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability

    No full text
    Characterizing the atmospheres of extrasolar planets is the new frontier in exoplanetary science. The last two decades of exoplanet discoveries have revealed that exoplanets are very common and extremely diverse in their orbital and bulk properties. We now enter a new era as we begin to investigate the chemical diversity of exoplanets, their atmospheric and interior processes, and their formation conditions. Recent developments in the field have led to unprecedented advancements in our understanding of atmospheric chemistry of exoplanets and the implications for their formation conditions. We review these developments in the present work. We review in detail the theory of atmospheric chemistry in all classes of exoplanets discovered to date, from highly irradiated gas giants, ice giants, and super-Earths, to directly imaged giant planets at large orbital separations. We then review the observational detections of chemical species in exoplanetary atmospheres of these various types using different methods, including transit spectroscopy, Doppler spectroscopy, and direct imaging. In addition to chemical detections, we discuss the advances in determining chemical abundances in these atmospheres and how such abundances are being used to constrain exoplanetary formation conditions and migration mechanisms. Finally, we review recent theoretical work on the atmospheres of habitable exoplanets, followed by a discussion of future outlook of the field.M. Agúndez acknowledges funding support from Spanish MINECO through grants CSD2009-00038, AYA2009-07304, and AYA2012-32032 and from the European Research Council (ERC Grant 610256: NANOCOSMOS). J. Moses thanks the NASA Exoplanet Research program NNX15AN82G for support. Y. Hu is supported by the National Natural Science Foundation of China 435 (NSFC) under grants 41375072 and 41530423

    Front-end process modeling in silicon

    No full text
    Front-end processing mostly deals with technologies associated to junction formation in semiconductor devices. Ion implantation and thermal anneal models are key to predict active dopant placement and activation. We review the main models involved in process simulation, including ion implantation, evolution of point and extended defects, amorphization and regrowth mechanisms, and dopant-defect interactions. Hierarchical simulation schemes, going from fundamental calculations to simplified models, are emphasized in this Colloquium. Although continuum modeling is the mainstream in the semiconductor industry, atomistic techniques are starting to play an important role in process simulation for devices with nanometer size features. We illustrate in some examples the use of atomistic modeling techniques to gain insight and provide clues for process optimization

    Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability

    No full text

    On the Evolution of Comets

    No full text

    The Composition of the Protosolar Disk and the Formation Conditions for Comets

    No full text

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    No full text
    10.1371/journal.pone.0139981PLoS ONE1010e013998
    corecore