541 research outputs found

    Measuring the spatial and temporal pressure variation from buried charges

    Get PDF
    The effect of changing geotechnical parameters on the impulse generated from a shallow buried charge has been the topic of a large amount of scientific interest in recent years. Many previous researchers have utilised a free flying mass experimental approach to capture the impulse imparted from such an event. This methodology has also been used for a parametric study conducted at the University of Sheffield Blast and Impact laboratory A new approach which aims to better capture the loading from shallow buried charges uses a fixed plate with data recorded via load transducers and spatially and temporally resolved via an array of Hopkinson pressure bars. This paper outlines the revised experimental approach for the capture of spatially and temporally resolved impulse data at the blast-target interface. Issues encountered during the commissioning tests using charges bur-ied in silica sand are discussed, and initial results from the original and revised Hopkinson pressure bar arrays are presented

    Bianchi type II models in the presence of perfect fluid and anisotropic dark energy

    Full text link
    Spatially homogeneous but totally anisotropic and non-flat Bianchi type II cosmological model has been studied in general relativity in the presence of two minimally interacting fluids; a perfect fluid as the matter fluid and a hypothetical anisotropic fluid as the dark energy fluid. The Einstein's field equations have been solved by applying two kinematical ans\"{a}tze: we have assumed the variation law for the mean Hubble parameter that yields a constant value of deceleration parameter, and one of the components of the shear tensor has been considered proportional to the mean Hubble parameter. We have particularly dwelled on the accelerating models with non-divergent expansion anisotropy as the Universe evolves. Yielding anisotropic pressure, the fluid we consider in the context of dark energy, can produce results that can be produced in the presence of isotropic fluid in accordance with the \Lambda CDM cosmology. However, the derived model gives additional opportunities by being able to allow kinematics that cannot be produced in the presence of fluids that yield only isotropic pressure. We have obtained well behaving cases where the anisotropy of the expansion and the anisotropy of the fluid converge to finite values (include zero) in the late Universe. We have also showed that although the metric we consider is totally anisotropic, the anisotropy of the dark energy is constrained to be axially symmetric, as long as the overall energy momentum tensor possesses zero shear stress.Comment: 15 pages; 5 figures; matches the version published in The European Physical Journal Plu

    Continuous-variable quantum teleportation of entanglement

    Full text link
    Entangled coherent states can be used to determine the entanglement fidelity for a device that is designed to teleport coherent states. This entanglement fidelity is universal, in that the calculation is independent of the use of entangled coherent states and applies generally to the teleportation of entanglement using coherent states. The average fidelity is shown to be a poor indicator of the capability of teleporting entanglement; i.e., very high average fidelity for the quantum teleportation apparatus can still result in low entanglement fidelity for one mode of the two-mode entangled coherent state.Comment: 5 pages, 1 figure, published versio

    The mediating effect of task presentation on collaboration and children's acquisition of scientific reasoning

    Get PDF
    There has been considerable research concerning peer interaction and the acquisition of children's scientific reasoning. This study investigated differences in collaborative activity between pairs of children working around a computer with pairs of children working with physical apparatus and related any differences to the development of children's scientific reasoning. Children aged between 9 and 10 years old (48 boys and 48 girls) were placed into either same ability or mixed ability pairs according to their individual, pre-test performance on a scientific reasoning task. These pairs then worked on either a computer version or a physical version of Inhelder and Piaget's (1958) chemical combination task. Type of presentation was found to mediate the nature and type of collaborative activity. The mixed-ability pairs working around the computer talked proportionally more about the task and management of the task; had proportionally more transactive discussions and used the record more productively than children working with the physical apparatus. Type of presentation was also found to mediated children's learning. Children in same ability pairs who worked with the physical apparatus improved significantly more than same ability pairs who worked around the computer. These findings were partially predicted from a socio-cultural theory and show the importance of tools for mediating collaborative activity and collaborative learning

    Random Oracles in a Quantum World

    Get PDF
    The interest in post-quantum cryptography - classical systems that remain secure in the presence of a quantum adversary - has generated elegant proposals for new cryptosystems. Some of these systems are set in the random oracle model and are proven secure relative to adversaries that have classical access to the random oracle. We argue that to prove post-quantum security one needs to prove security in the quantum-accessible random oracle model where the adversary can query the random oracle with quantum states. We begin by separating the classical and quantum-accessible random oracle models by presenting a scheme that is secure when the adversary is given classical access to the random oracle, but is insecure when the adversary can make quantum oracle queries. We then set out to develop generic conditions under which a classical random oracle proof implies security in the quantum-accessible random oracle model. We introduce the concept of a history-free reduction which is a category of classical random oracle reductions that basically determine oracle answers independently of the history of previous queries, and we prove that such reductions imply security in the quantum model. We then show that certain post-quantum proposals, including ones based on lattices, can be proven secure using history-free reductions and are therefore post-quantum secure. We conclude with a rich set of open problems in this area.Comment: 38 pages, v2: many substantial changes and extensions, merged with a related paper by Boneh and Zhandr

    Teleportation of a quantum state of a spatial mode with a single massive particle

    Full text link
    Mode entanglement exists naturally between regions of space in ultra-cold atomic gases. It has, however, been debated whether this type of entanglement is useful for quantum protocols. This is due to a particle number superselection rule that restricts the operations that can be performed on the modes. In this paper, we show how to exploit the mode entanglement of just a single particle for the teleportation of an unknown quantum state of a spatial mode. We detail how to overcome the superselection rule to create any initial quantum state and how to perform Bell state analysis on two of the modes. We show that two of the four Bell states can always be reliably distinguished, while the other two have to be grouped together due to an unsatisfied phase matching condition. The teleportation of an unknown state of a quantum mode thus only succeeds half of the time.Comment: 12 pages, 1 figure, this paper was presented at TQC 2010 and extends the work of Phys. Rev. Lett. 103, 200502 (2009

    A four week trial of hypertonic saline in children with mild cystic fibrosis lung disease: Effect on mucociliary clearance and clinical outcomes

    Get PDF
    Background: Hypertonic saline (HS) is commonly prescribed for children with cystic fibrosis (CF) despite the absence of strong data indicating clinical efficacy in a population with mild lung disease. We hypothesized that HS treatment would result in a sustained improvement in mucociliary clearance (MCC) in children with CF who had minimal lung disease, thus providing evidence for a biologically relevant effect that also may be associated with clinical improvements. Methods: We performed a randomized, placebo controlled, double blind study of 6% versus 0.12% sodium chloride, delivered three-times daily with an eFlow nebulizer for 4 weeks. MCC was measured using gamma scintigraphy at baseline, 2-hours after the first study treatment, and ~12-hours after the final dose (at day 28). Spirometry, respiratory symptoms (CFQ-R), and safety were also assessed. Results: Study treatments were generally well tolerated and safe. HS (6% sodium chloride) resulted in a significant, sustained improvement from baseline in whole lung clearance after 4 weeks of therapy (p = 0.014), despite absence of a prolonged single-dose effect after the initial dose. This sustained change (12 hrs after prior dose) was significantly greater when compared to placebo (0.12% sodium chloride) treatment (p = 0.016). Improvements in spirometry with HS did not reach statistical significance but correlated with MCC changes. Conclusions: The observed sustained improvement in MCC with HS suggests that this treatment may yield health benefits, even in relatively mildly affected children with CF. Highlighting this physiologic finding is important due to the lack of meaningful, validated endpoints in this population

    Generalized Second Law of Thermodynamics on the Event Horizon for Interacting Dark Energy

    Full text link
    Here we are trying to find the conditions for the validity of the generalized second law of thermodynamics (GSLT) assuming the first law of thermodynamics on the event horizon in both cases when the FRW universe is filled with interacting two fluid system- one in the form of cold dark matter and the other is either holographic dark energy or new age graphic dark energy. Using the recent observational data we have found that GSLT holds both in quintessence era as well as in phantom era for new age graphic model while for holographic dark energy GSLT is valid only in phantom era.Comment: 8 pages, 2 figure

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
    corecore