2,566 research outputs found
Pollination by Hemimepsis wasps: A newly described South African guild with an analysis of trait convergence between guild members
International audienc
SVtL: System Verification through Logic: tool support for verifying sliced hierarchical statecharts
SVtL is the core of a slicing-based verification environment for UML statechart models. We present an overview of the SVtL software architecture. Special attention is paid to the slicing approach. Slicing reduces the complexity of the verification approach, based on removing pieces of the model that are not of interest during verification. In [18] a slicing algorithm has been proposed for statecharts, but it was not able to handle orthogonal regions efficiently. We optimize this algorithm by removing false dependencies, relying on the broadcasting mechanism between different parts of the statechart model
Diverse pollination systems of the twin-spurred orchid genus Satyrium in African grasslands
The large terrestrial orchid genus Satyrium underwent evolutionary radiations in the Cape floral region and the grasslands of southern and eastern Africa. These radiations were accompanied by tremendous diversification of the unusual twin-spurred flowers that characterize the genus, but pollination data required to interpret these patterns of floral evolution have been lacking for grassland species in the genus. Here we document pollinators, nectar properties, and levels of pollination success for 11 grassland Satyrium species in southern and south-central Africa. Pollinators of these species include bees, beetles, butterflies, hawkmoths, noctuid moths, long-proboscid flies, and sunbirds. Most species appear to be specialized for pollination by one functional pollinator group. Long-proboscid fly pollination systems are reported for the first time in Satyrium (in S. macrophyllum and a high-altitude form of S. neglectum). Floral morphology, especially spur length and rostellum structure, differs markedly among plants with different pollinators, while nectar volume, concentration, and sugar composition are fairly uniform across species. Most taxa exhibited high levels of pollination success (>50% of flowers pollinated), a trend that can be attributed to the presence of nectar in the twin spurs
Spin Injection and Detection in Magnetic Nanostructures
We study theoretically the spin transport in a nonmagnetic metal connected to
ferromagnetic injector and detector electrodes. We derive a general expression
for the spin accumulation signal which covers from the metallic to the
tunneling regime. This enables us to discuss recent controversy on spin
injection and detection experiments. Extending the result to a superconducting
device, we find that the spin accumulation signal is strongly enhanced by
opening of the superconducting gap since a gapped superconductor is a low
carrier system for spin transport but not for charge. The enhancement is also
expected in semiconductor devices.Comment: 4 pages, 3 figure
Continuous-variable quantum teleportation of entanglement
Entangled coherent states can be used to determine the entanglement fidelity
for a device that is designed to teleport coherent states. This entanglement
fidelity is universal, in that the calculation is independent of the use of
entangled coherent states and applies generally to the teleportation of
entanglement using coherent states. The average fidelity is shown to be a poor
indicator of the capability of teleporting entanglement; i.e., very high
average fidelity for the quantum teleportation apparatus can still result in
low entanglement fidelity for one mode of the two-mode entangled coherent
state.Comment: 5 pages, 1 figure, published versio
Parton model versus color dipole formulation of the Drell-Yan process
In the kinematical region where the center of mass energy is much larger than
all other scales, the Drell-Yan process can be formulated in the target rest
frame in terms of the same color dipole cross section as low Bjorken-x deep
inelastic scattering. Since the mechanisms for heavy dilepton production appear
very different in the dipole approach and in the conventional parton model, one
may wonder whether these two formulations really represent the same physics. We
perform a comparison of numerical calculations in the color dipole approach
with calculations in the next-to-leading order parton model. For proton-proton
scattering, the results are very similar at low x_2 from fixed target to RHIC
energies, confirming the close connection between these two very different
approaches. We also compare the transverse momentum distributions of Drell-Yan
dileptons predicted in both formulations. The range of applicability of the
dipole formulation and the impact of future Drell-Yan data from RHIC for
determining the color dipole cross section are discussed. A detailed derivation
of the dipole formulation of the Drell-Yan process is also included.Comment: 20 pages, 5 figure
Nuclear effects in the Drell-Yan process at very high energies
We study Drell-Yan (DY) dilepton production in proton(deuterium)-nucleus and
in nucleus-nucleus collisions within the light-cone color dipole formalism.
This approach is especially suitable for predicting nuclear effects in the DY
cross section for heavy ion collisions, as it provides the impact parameter
dependence of nuclear shadowing and transverse momentum broadening, quantities
that are not available from the standard parton model. For p(D)+A collisions we
calculate nuclear shadowing and investigate nuclear modification of the DY
transverse momentum distribution at RHIC and LHC for kinematics corresponding
to coherence length much longer than the nuclear size. Calculations are
performed separately for transversely and longitudinally polarized DY photons,
and predictions are presented for the dilepton angular distribution.
Furthermore, we calculate nuclear broadening of the mean transverse momentum
squared of DY dileptons as function of the nuclear mass number and energy. We
also predict nuclear effects for the cross section of the DY process in heavy
ion collisions. We found a substantial nuclear shadowing for valence quarks,
stronger than for the sea.Comment: 46 pages, 18 figures, title changed and some discussion added,
accepted for publication in PR
A dimensionally continued Poisson summation formula
We generalize the standard Poisson summation formula for lattices so that it
operates on the level of theta series, allowing us to introduce noninteger
dimension parameters (using the dimensionally continued Fourier transform).
When combined with one of the proofs of the Jacobi imaginary transformation of
theta functions that does not use the Poisson summation formula, our proof of
this generalized Poisson summation formula also provides a new proof of the
standard Poisson summation formula for dimensions greater than 2 (with
appropriate hypotheses on the function being summed). In general, our methods
work to establish the (Voronoi) summation formulae associated with functions
satisfying (modular) transformations of the Jacobi imaginary type by means of a
density argument (as opposed to the usual Mellin transform approach). In
particular, we construct a family of generalized theta series from Jacobi theta
functions from which these summation formulae can be obtained. This family
contains several families of modular forms, but is significantly more general
than any of them. Our result also relaxes several of the hypotheses in the
standard statements of these summation formulae. The density result we prove
for Gaussians in the Schwartz space may be of independent interest.Comment: 12 pages, version accepted by JFAA, with various additions and
improvement
Space Vehicle Terrestrial Environment Design Requirements Guidelines
The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented
High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity
Planet formation studies are often focused on solar-type stars, implicitly
considering our Sun as reference point. This approach overlooks, however, that
Herbig Ae/Be stars are in some sense much better targets to study planet
formation processes empirically, with their disks generally being larger,
brighter and simply easier to observe across a large wavelength range. In
addition, massive gas giant planets have been found on wide orbits around early
type stars, triggering the question if these objects did indeed form there and,
if so, by what process. In the following I briefly review what we currently
know about the occurrence rate of planets around intermediate mass stars,
before discussing recent results from Herbig Ae/Be stars in the context of
planet formation. The main emphasis is put on spatially resolved polarized
light images of potentially planet forming disks and how these images - in
combination with other data - can be used to empirically constrain (parts of)
the planet formation process. Of particular interest are two objects, HD100546
and HD169142, where, in addition to intriguing morphological structures in the
disks, direct observational evidence for (very) young planets has been
reported. I conclude with an outlook, what further progress we can expect in
the very near future with the next generation of high-contrast imagers at 8-m
class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in
special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables
and reference
- …
