4 research outputs found

    Bupivacaine mandibular nerve block affects intraoperative blood pressure and heart rate in a Yucatan miniature swine mandibular condylectomy model: A pilot study

    No full text
    PURPOSE/AIM: The primary objective was to evaluate the effect of a bupivacaine mandibular nerve block on intraoperative blood pressure (BP) and heart rate (HR) in response to surgical stimulation and the need for systemic analgesics postoperatively. We hypothesized that a mandibular nerve block would decrease the need for systemic analgesics both intraoperatively and postoperatively. MATERIALS AND METHODS: Fourteen adult male Yucatan pigs were purchased. Pigs were chemically restrained with ketamine, midazolam, and dexmedetomidine and anesthesia was maintained with isoflurane inhalant anesthesia. Pigs were randomized to receive a mandibular block with either bupivacaine (bupivacaine group) or saline (control group). A nerve stimulator was used for administration of the block with observation of masseter muscle twitch to indicate the injection site. Invasive BP and HR were measured with the aid of an arterial catheter in eight pigs. A rescue analgesic protocol consisting of fentanyl and lidocaine was administered if HR or BP values increased 20% from baseline. Postoperative pain was quantified with a customized ethogram. HR and BP were evaluated at base line, pre-rescue, 10 and 20 min post-rescue. RESULTS: Pre-rescue mean BP was significantly increased (p = .001) for the bupivacaine group. Mean intraoperative HR was significantly lower (p = .044) in the bupivacaine versus saline group. All other parameters were not significant. CONCLUSION: Addition of a mandibular nerve block to the anesthetic regimen in the miniature pig condylectomy model may improve variations in intraoperative BP and HR. This study establishes the foundation for future studies with larger animal numbers to confirm these preliminary findings

    Tissue-engineered autologous grafts for facial bone reconstruction

    No full text
    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering

    Oral Manifestations of Viral Diseases

    No full text
    corecore