9 research outputs found

    Multiphasic nonlinear mixed growth models for laying hens

    No full text
    Appropriate evaluation of BW and gain during rearing is required for optimal extended laying performance in laying hens. The objective of this study was to compare monophasic, diphasic, and triphasic Gompertz and logistic models describing BW and gain in individually fed free-run laying hens and to study the variation between individuals in shape parameters. Fifteen Lohmann Brown Lite hens were fed ad libitum from week 0 to 43 with a precision feeding system, measuring feed intake and BW individually in a group housed setting. Random variables related to mature weight and timing of maximum gain during the pubertal growth phase were introduced into the multiphasic model for BW with the best fit. For both the weight-age and gain-age functions, the diphasic and triphasic Gompertz and logistic model models fitted the data better than the monophasic models. The Gompertz model was able to identify the ages at the highest gain at similar time points for both BW and gain, whereas the logistic models failed to do so. The derivative of the multiphasic Gompertz models for the gain-age relationship identified age at the highest gain at similar ages as compared with the logistic models for gain. The mixed models predicted that the individual mature BW ranged from 1.83 kg to 2.10 kg and the variability in the timing of the highest rate of gain during the pubertal growth spurt ranged from 15.26 wk to 19.79 wk. Including random terms associated with the mature BW and the second inflection point of the diphasic Gompertz growth model allowed for identification of variability in the growth curve shape between individuals, which can be a tool to study the relationship between the individual growth curve shape and performance parameters.</p

    The effect of quantitative feed restriction on allometric growth in broilers

    No full text
    Feed restriction in broilers is aimed at preventing metabolic disorders, increasing feed efficiency, or manipulating carcass conformation. The purpose of the current study was to investigate the effects of modest graded levels feed restriction during the second and third wk of life. Mixed-sex chickens were raised in pens with 4 replications per treatment to 35 d of age. Chickens were fed ad libitum throughout the trial, or 90, 80, or 70% of expected ad libitum feed intake during the second wk of life, or 95, 90, 85, or 80% of expected ad libitum feed intake during the third wk of life. Feed intake, BW, ADG, and feed conversion ratio (FCR) were measured and weekly dissections were conducted to characterize allometric growth of the breast muscle, legs, abdominal fat pad, liver, gastro-intestinal tract (GIT), and heart. Feeding 70% of ad libitum during wk 2 and 80% during wk 3 reduced ADG during the restriction period and reduced BW at the end of the restriction period, but chickens exhibited complete compensatory growth within one wk after the restriction period. No significant effects of restriction treatment were found on BW, FCR, fat pad, empty GIT, breast muscle, heart, legs, and liver weight at d 35, but allometric growth curve for breast muscle was lower in birds fed 80 and 85% of ad libitum during wk 3, and for birds fed 70% of ad libitum in wk 2. Allometric growth curves for all body parts were different between males and females, except for the liver. Females had higher relative fat pad, breast muscle, and liver weight and a lower GIT and heart and leg weight compared with males at d 35. Feed restriction could differentially affect males and females. This study showed that feeding 70% of ad libitum in wk 2 might be beneficial to reduce fat pad, but later feed restriction in wk 3 may reduce breast muscle weight at broiler processing age

    Genetic and Non-Genetic Inheritance of Natural Antibodies Binding Keyhole Limpet Hemocyanin in a Purebred Layer Chicken Line

    No full text
    Natural antibodies (NAb) are defined as antibodies present in individuals without known antigenic challenge. Levels of NAb binding keyhole limpet hemocyanin (KLH) in chickens were earlier shown to be heritable, and to be associated with survival. Selective breeding may thus provide a strategy to improve natural disease resistance. We phenotyped 3,689 white purebred laying chickens for KLH binding NAb of different isotypes around 16 weeks of age. Heritabilities of 0.12 for the titers of total antibodies (IgT), 0.14 for IgM, 0.10 for IgA, and 0.07 for IgG were estimated. We also estimated high, positive genetic, and moderate to high, positive phenotypic correlations of IgT, IgM, IgA, and IgG, suggesting that selective breeding for NAb can be done on all antibody isotypes simultaneously. In addition, a relatively substantial non-genetic maternal environmental effect of 0.06 was detected for IgM, which may reflect a transgenerational effect. This suggests that not only the genes of the mother, but also the maternal environment affects the immune system of the offspring. Breaking strength and early eggshell whiteness of the mother’s eggs were predictive for IgM levels in the offspring, and partly explained the observed maternal environmental effects. The present results confirm that NAb are heritable, however maternal effects should be taken into account

    Genetic relations between natural antibodies binding keyhole limpet hemocyanin and production traits in a purebred layer chicken line

    No full text
    Natural antibodies (NAb) are an important component of the first line of immune defense. Selective breeding for enhanced NAb levels in chickens may improve general disease resistance. It is unknown what the consequences of selection for NAb will be on the productive performance of laying hens. In this paper we describe the genetic relations between NAb titers binding keyhole limpet hemocyanin at 19 wk age and production traits in a white purebred leghorn chicken line observed in several time periods. A linear animal model was used to estimate (co)variance components, heritabilities, and correlations. Negative genetic correlations were found between egg weight and NAb titers, and between egg breaking strength and NAb titers. Positive genetic correlations were found between the feed conversion ratio (consumed feed/egg mass produced) and NAb titers, and egg production and NAb titers. Negative phenotypic correlations were found between body weight and NAb titers, between egg weight and NAb titers, and between egg breaking strength and NAb titers. Positive phenotypic correlations were found between egg production and NAb titers, and feed conversion ratio and NAb titers. In general, phenotypic correlations were more often significant, but less pronounced than genetic correlations. Other production traits were not found to be significant related to NAb titers. These findings suggest that there is a genetic tradeoff between levels of immunity and some production traits, although the underlying mechanism(s) remain(s) unclear. The results suggest possible consequences for production efficiency as a result of selective breeding for improved general disease resistance by natural antibodies

    Effects of feed access after hatch and inclusion of fish oil and medium chain fatty acids in a pre-starter diet on broiler chicken growth performance and humoral immunity

    No full text
    Delayed feed and water access is known to impair growth performance of day old broiler chickens. Although effects of feed access on growth performance and immune function of broilers have been examined before, effects of dietary composition and its potential interaction with feed access are hardly investigated. This experiment aimed to determine whether moment of first feed and water access after hatch and pre-starter composition (0 to 7 days) affect growth rate and humoral immune function in broiler chickens. Direct fed chickens received feed and water directly after placement in the grow-out facility, whilst delayed fed chickens only after 48 h. Direct and delayed fed chickens received a control pre-starter diet, or a diet containing medium chain fatty acids (MCFA) or fish oil. At 21 days, chickens were immunized by injection of sheep red blood cells. The mortality rate depended on an interaction between feed access and pre-starter composition (P=0.014). Chickens with direct feed access fed the control pre-starter diet had a higher risk for mortality than chickens with delayed feed access fed the control pre-starter diet (16.4% v. 4.2%) whereas the other treatment groups were in-between. BW gain and feed intake till 25 days in direct fed chickens were higher compared with delayed fed chickens, whilst gain to feed ratio was lower. Within the direct fed chickens, the control pre-starter diet resulted in the highest BW at 28 days and the MCFA pre-starter diet the lowest (Δ=2.4%), whereas this was opposite for delayed fed chickens (Δ=3.0%; P=0.033). Provision of MCFA resulted in a 4.6% higher BW gain and a higher gain to feed ratio compared with other pre-starter diets, but only during the period it was provided (2 to 7 days). Minor treatment effects were found for humoral immune response by measuring immunoglobulins, agglutination titers, interferon gamma (IFN- γ ), and complement activity. Concluding, current inclusion levels of fish oil (5 g/kg) and MCFA (30 g/kg) in the pre-starter diet appear to have limited (carryover) effects on growth and development, as well as on humoral immune function.</p

    Wool metrology research and development to date

    No full text
    corecore