177 research outputs found

    Improvements in obtaining and characterizing mouse cerebrospinal fluid. Application to mouse hepatitis virus-induced encephalomyelitis

    Get PDF
    This report describes advances in techniques for analyzing cellular and humoral immune components in the cerebrospinal fluid (CSF) of the mouse that are applicable to other laboratory animals. CSF studies undertaken during experimental infection of mice with JHM strain virus (JHMV) of mouse hepatitis virus are presented. A critical pitfall which can lead to erroneous or invalid results is contamination of the CSF by even minute quantities of blood. Means of avoiding this contamination are attention to anatomical reference points, the use of a micropipet, and prior intracardiac perfusion of animals with phosphate-buffered saline. Cells in the CSF were typed as either B, T, polymorphonuclear, or mononuclear cells by the combination of a microcytotoxicity assay and histologic stains. A radioimmunoassay (RIA) allowed quantification of antibodies to JHMV in the CSF and indicated the presence of intrathecal synthesis of antibody in chronically infected mice. The combined use of these sensitive methods makes possible CSF analysis in individual mice rather than in pooled groups

    High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C_6

    Get PDF
    A method for determination of atomic dipole matrix elements of principal transitions from the value of dispersion coefficient C_6 of molecular potentials correlating to two ground-state atoms is proposed. The method is illustrated on atomic Cs using C_6 deduced from high-resolution Feshbach spectroscopy. The following reduced matrix elements are determined < 6S_{1/2} || D || 6P_{1/2} > =4.5028(60) |e| a0 and =6.3373(84) |e| a0 (a0= 0.529177 \times 10^{-8} cm.) These matrix elements are consistent with the results of the most accurate direct lifetime measurements and have a similar uncertainty. It is argued that the uncertainty can be considerably reduced as the coefficient C_6 is constrained further.Comment: 4 pages; 3 fig

    Microscopic study of freeze-out in relativistic heavy ion collisions at SPS energies

    Full text link
    The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding systems of heavy nuclei at 160 AGeV/cc are analyzed within the microscopic Quark Gluon String Model (QGSM). We found that even for the most heavy systems particle emission takes place from the whole space-time domain available for the system evolution, but not from the thin ''freeze-out hypersurface", adopted in fluid dynamical models. Pions are continuously emitted from the whole volume of the reaction and reflect the main trends of the system evolution. Nucleons in Pb+Pb collisions initially come from the surface region. For both systems there is a separation of the elastic and inelastic freeze-out. The mesons with large transverse momenta, ptp_t, are predominantly produced at the early stages of the reaction. The low ptp_t-component is populated by mesons coming mainly from the decay of resonances. This explains naturally the decreasing source sizes with increasing ptp_t, observed in HBT interferometry. Comparison with S+S and Au+Au systems at 11.6 AGeV/cc is also presented.Comment: REVTEX, 26 pages incl. 9 figures and 2 tables, to be published in the Physical Review

    Comparison of space-time evolutions of hot/dense matter in sNN\sqrt{s_{NN}}=17 and 130 GeV relativistic heavy ion collisions based on a hydrodynamical model

    Full text link
    Based on a hydrodynamical model, we compare 130 GeV/AA Au+Au collisions at RHIC and 17 GeV/AA Pb+Pb collisions at SPS. The model well reproduces the single-particle distributions of both RHIC and SPS. The numerical solution indicates that huge amount of collision energy in RHIC is mainly used to produce a large extent of hot fluid rather than to make a high temperature matter; longitudinal extent of the hot fluid in RHIC is much larger than that of SPS and initial energy density of the fluid is only 5% higher than the one in SPS. The solution well describes the HBT radii at SPS energy but shows some deviations from the ones at RHIC.Comment: 28 pages, 21 figures, REVTeX4, one figure is added and some figures are replace

    Antihistaminic effect of Bauhinia racemosa leaves

    Get PDF
    Bauhinia racemosa Lam. (Caesalpiniaceae) leaves have been used in the treatment of asthma traditionally and we therefore undertook this study to scientifically validate its benefit in asthma using suitable animal models. Antihistaminic principles are known to be useful in the treatment of asthma; hence, in the present work, the antihistaminic activity of an ethanol extract of B. racemosa (at a dose of 50 mg/kg, i.p.) was assessed using clonidine-induced catalepsy and haloperidol-induced catalepsy in Swiss albino mice. The results showed that the ethanol extract inhibits clonidine-induced catalepsy but there is no effect on haloperidol-induced catalepsy. This suggests that the inhibition is through an antihistaminic action and that there is no role of dopamine. Hence, we concluded that the ethanol extract has significant antihistaminic activity. The polar constituents in the ethanol extract of leaves of B. racemosa may be responsible for the antihistaminic activity and B. racemosa may therefore have a role in the treatment of asthma

    Space-time evolution and HBT analysis of relativistic heavy ion collisions in a chiral SU(3) x SU(3) model

    Full text link
    The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametrisations of a chiral SU(3) sigma-omega model. The selfconsistent collective expansion includes the effects of effective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EoS show different types of phase transitions and even a crossover. The influence of the order of the phase transition and of the difference in the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e. a weak first-order chiral phase transition, or even a smooth crossover leads to distinctly different HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears difficult to achieve within the ideal hydrodynamical approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC

    A graph-based integration of multimodal brain imaging data for the detection of early mild cognitive impairment (E-MCI)

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia in older adults. By the time an individual has been diagnosed with AD, it may be too late for potential disease modifying therapy to strongly influence outcome. Therefore, it is critical to develop better diagnostic tools that can recognize AD at early symptomatic and especially pre-symptomatic stages. Mild cognitive impairment (MCI), introduced to describe a prodromal stage of AD, is presently classified into early and late stages (E-MCI, L-MCI) based on severity. Using a graph-based semi-supervised learning (SSL) method to integrate multimodal brain imaging data and select valid imaging-based predictors for optimizing prediction accuracy, we developed a model to differentiate E-MCI from healthy controls (HC) for early detection of AD. Multimodal brain imaging scans (MRI and PET) of 174 E-MCI and 98 HC participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort were used in this analysis. Mean targeted region-of-interest (ROI) values extracted from structural MRI (voxel-based morphometry (VBM) and FreeSurfer V5) and PET (FDG and Florbetapir) scans were used as features. Our results show that the graph-based SSL classifiers outperformed support vector machines for this task and the best performance was obtained with 66.8% cross-validated AUC (area under the ROC curve) when FDG and FreeSurfer datasets were integrated. Valid imaging-based phenotypes selected from our approach included ROI values extracted from temporal lobe, hippocampus, and amygdala. Employing a graph-based SSL approach with multimodal brain imaging data appears to have substantial potential for detecting E-MCI for early detection of prodromal AD warranting further investigation

    A theoretical framework and research agenda for studying team attributions in sport

    Get PDF
    The attributions made for group outcomes have attracted a great deal of interest in recent years. In this article we bring together much of the current research on attribution theory in sport and outline a new conceptual framework and research agenda for investigating the attributions of team members. The proposed framework draws on multiple conceptual approaches including models of attribution, group dynamics and stress responses to provide a detailed hypothetical description of athletes' physiological, cognitive and affective responses to group competition. In describing this model we outline important antecedents of team attributions before hypothesising how attributions can impact hormonal and cardiovascular responses of athletes, together with cognitive (goals, choices, expectations), affective (self-esteem, emotions), and behavioural (approach-avoidance actions) responses of groups and group members. We conclude by outlining important methodological considerations and implications for structured context specific attribution-based interventions

    Nucleosomes in gene regulation: theoretical approaches

    Get PDF
    This work reviews current theoretical approaches of biophysics and bioinformatics for the description of nucleosome arrangements in chromatin and transcription factor binding to nucleosomal organized DNA. The role of nucleosomes in gene regulation is discussed from molecular-mechanistic and biological point of view. In addition to classical problems of this field, actual questions of epigenetic regulation are discussed. The authors selected for discussion what seem to be the most interesting concepts and hypotheses. Mathematical approaches are described in a simplified language to attract attention to the most important directions of this field
    corecore