553 research outputs found

    Waiting time models of cancer progression

    Full text link
    Cancer progression is an evolutionary process that is driven by mutation and selection in a population of tumor cells. We discuss mathematical models of cancer progression, starting from traditional multistage theory. Each stage is associated with the occurrence of genetic alterations and their fixation in the population. We describe the accumulation of mutations using conjunctive Bayesian networks, an exponential family of waiting time models in which the occurrence of mutations is constrained to a partial temporal order. Two opposing limit cases arise if mutations either follow a linear order or occur independently. We derive exact analytical expressions for the waiting time until a specific number of mutations have accumulated in these limit cases as well as for the general conjunctive Bayesian network. Finally, we analyze a stochastic population genetics model that explicitly accounts for mutation and selection. In this model, waves of clonal expansions sweep through the population at equidistant intervals. We present an approximate analytical expression for the waiting time in this model and compare it to the results obtained for the conjunctive Bayesian networks

    The Role of Friction in Compaction and Segregation of Granular Materials

    Full text link
    We investigate the role of friction in compaction and segregation of granular materials by combining Edwards' thermodynamic hypothesis with a simple mechanical model and mean-field based geometrical calculations. Systems of single species with large friction coefficients are found to compact less. Binary mixtures of grains differing in frictional properties are found to segregate at high compactivities, in contrary to granular mixtures differing in size, which segregate at low compactivities. A phase diagram for segregation vs. friction coefficients of the two species is generated. Finally, the characteristics of segregation are related directly to the volume fraction without the explicit use of the yet unclear notion of compactivity.Comment: 9 pages, 6 figures, submitted to Phys. Rev.

    Precision neutron interferometric measurements of the n-p, n-d, and n-3He zero-energy coherent neutron scattering amplitudes

    Full text link
    We have performed high precision measurements of the zero-energy neutron scattering amplitudes of gas phase molecular hydrogen, deuterium, and 3^{3}He using neutron interferometry. We find bnp=(3.7384±0.0020)b_{\mathit{np}}=(-3.7384 \pm 0.0020) fm\cite{Schoen03}, bnd=(6.6649±0.0040)b_{\mathit{nd}}=(6.6649 \pm 0.0040) fm\cite{Black03,Schoen03}, and bn3He=(5.8572±0.0072)b_{n^{3}\textrm{He}} = (5.8572 \pm 0.0072) fm\cite{Huffman04}. When combined with the previous world data, properly corrected for small multiple scattering, radiative corrections, and local field effects from the theory of neutron optics and combined by the prescriptions of the Particle Data Group, the zero-energy scattering amplitudes are: bnp=(3.7389±0.0010)b_{\mathit{np}}=(-3.7389 \pm 0.0010) fm, bnd=(6.6683±0.0030)b_{\mathit{nd}}=(6.6683 \pm 0.0030) fm, and bn3He=(5.853±.007)b_{n^{3}\textrm{He}} = (5.853 \pm .007) fm. The precision of these measurements is now high enough to severely constrain NN few-body models. The n-d and n-3^{3}He coherent neutron scattering amplitudes are both now in disagreement with the best current theories. The new values can be used as input for precision calculations of few body processes. This precision data is sensitive to small effects such as nuclear three-body forces, charge-symmetry breaking in the strong interaction, and residual electromagnetic effects not yet fully included in current models.Comment: 6 pages, 4 figures, submitted to Physica B as part of the Festschrift honouring Samuel A. Werner at the International Conference on Neutron Scattering 200

    Locating emergent trees in a tropical rainforest using data from an Unmanned Aerial Vehicle (UAV)

    Get PDF
    Emergent trees, which are taller than surrounding trees with exposed crowns, provide crucial services to several rainforest species especially to endangered primates such as gibbons and siamangs (Hylobatidae). Hylobatids show a preference for emergent trees as sleeping sites and for vocal displays, however, they are under threat from both habitat modifications and the impacts of climate change. Traditional plot-based ground surveys have limitations in detecting and mapping emergent trees across a landscape, especially in dense tropical forests. In this study, a method is developed to detect emergent trees in a tropical rainforest in Sumatra, Indonesia, using a photogrammetric point cloud derived from RGB images collected using an Unmanned Aerial Vehicle (UAV). If a treetop, identified as a local maximum in a Digital Surface Model generated from the point cloud, was higher than the surrounding treetops (Trees_EM), and its crown was exposed above its neighbours (Trees_SL; assessed using slope and circularity measures), it was identified as an emergent tree, which might therefore be selected preferentially as a sleeping tree by hylobatids. A total of 54 out of 63 trees were classified as emergent by the developed algorithm and in the field. The algorithm is based on relative height rather than canopy height (due to a lack of terrain data in photogrammetric point clouds in a rainforest environment), which makes it equally applicable to photogrammetric and airborne laser scanning point cloud data
    corecore