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Abstract
Aim: How species respond to climate change is influenced by their sensitivity to cli-
matic conditions (i.e. their climatic niche) and aspects of their adaptive capacity (e.g. 
their dispersal ability and ecological niche). To date, it is largely unknown whether 
and how species’ sensitivity to climate change and their adaptive capacity covary. 
However, understanding this relationship is important to predict the potential con-
sequences of a changing climate for species assemblages. Here, we test how species’ 
sensitivity to climate change and trait-based measures of their ecological adaptive ca-
pacity (i) vary along a broad elevational gradient and (ii) covary across a large number 
of bird species.
Location: A Neotropical elevational gradient (300–3600  m.a.s.l.) in the Manú 
Biosphere Reserve, south-east Peru.
Methods: We focus on 215 frugivorous bird species along a Neotropical elevational 
gradient. We approximate species’ sensitivity to climate change by their climatic niche 
breadth, based on species occurrences across South America and bioclimatic vari-
ables. In addition, we use a trait-based approach to estimate the dispersal ability of 
species (approximated by their wing pointedness), their dietary niche breadth (ap-
proximated by bill width) and their habitat niche breadth (the number of used habitat 
classes).
Results: We found that (i) species’ climatic niche breadth increased with elevation, 
while their trait-based dispersal ability and dietary niche breadth decreased with el-
evation, and (ii) sensitivity to climate change and trait-based adaptive capacity were 
not related across species.
Main conclusions: These results suggest different mechanisms of how species in low-
land and highland assemblages might respond to climate change. The independent 
variation of species’ sensitivity to climate change and their trait-based adaptive capac-
ity suggests that accounting for both dimensions will improve assessments of species’ 
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1  |  INTRODUC TION

Species can respond in different ways to climate change. For exam-
ple, species might persist locally if changing climates lie within their 
climatic niche or if they adjust to changing climates in situ (Bellard 
et al., 2012). Moreover, species might shift their geographical ranges 
to track their suitable climate under climate change (Chen et al., 
2011; Lenoir et al., 2020). In addition, species need to respond to 
climate-induced changes in food resource or habitat availability 
(Jackson et al., 2015; Maron et al., 2015). Therefore, understanding 
and predicting the potential impacts of climate change on species as-
semblages likely requires accounting for the different ways in which 
species may respond to the changing conditions.

To understand species’ responses to climate change, we can draw 
upon a framework that has been described by the Intergovernmental 
Panel on Climate Change (IPCC, 2007) and is commonly applied in 
assessments of species’ vulnerability to climate change (Foden et al., 
2013, 2018). According to this framework, species’ susceptibility to 
climate change comprises three dimensions: the exposure of species 
to climate change (i.e. the direction and extent to which the physi-
cal environment of the species changes), their sensitivity to any ex-
posure and their adaptive capacity to counteract exposure effects 
(Foden et al., 2013). Here, we explicitly focus on the sensitivity and 
the adaptive capacity, which relate to intrinsic properties of species. 
First, the sensitivity of a species to climate change is defined as the 
degree to which it is affected by any kind of climate change (Foden 
et al., 2018; IPCC, 2007). Species’ sensitivity to climate change is 
influenced by their climatic niche, that is the climatic conditions in 
which species can maintain evolutionary fitness and stable popula-
tions (Algar & Tarr, 2018). Second, the adaptive capacity of a species 
is defined as its ability to adjust to any kind of climate change, re-
spond to its consequences and moderate potential damage (Foden 
et al., 2018; IPCC, 2007, 2014). Species’ adaptive capacity is related 
to several ecological and evolutionary attributes of the species, for 
example their dispersal ability, phenotypic plasticity and evolution-
ary potential (Foden et al., 2018; Pacifici et al., 2015).

Studies on potential impacts of climate change on species as-
semblages often focus on species’ sensitivity to climate change, for 
example by assessing occurrence-based or physiologically derived 
measures of species’ climatic niche (Khaliq et al., 2014; Nunez et al., 
2019; Thuiller et al., 2006). In contrast, aspects of the adaptive ca-
pacity of species have mostly been accounted for in integrated vul-
nerability measures (Culp et al., 2017; Foden et al., 2013) and are only 
recently being incorporated into projection models (Di Musciano 

et al., 2020; Razgour et al., 2019). Given the difficulty in quantifying 
the different aspects of species’ adaptive capacity, it remains largely 
unclear how the sensitivity of species to climate change is related to 
adaptive capacity.

One way towards a more integrative understanding of species’ 
susceptibility to climate change is to apply trait-based approaches 
(Schleuning et al., 2020; Willis et al., 2015). Response traits influence 
how species respond to environmental change and can approximate 
their sensitivity and adaptive capacity under climate change (Foden 
et al., 2018; Luck et al., 2012). First, the climatic niche breadth in-
fluences the persistence of species under climate change and can 
therefore be used to approximate species’ sensitivity to climate 
change (Botts et al., 2013; Foden et al., 2018; Herrera et al., 2018; 
Figure 1a). Second, several response traits influence critical ecologi-
cal aspects of species’ adaptive capacity. For example, species’ body 
size or wing shape influences their ability to disperse and shift their 
ranges under climate change (Dawideit et al., 2009; Sheard et al., 
2020; Figure 1b). Furthermore, the ecological niche breadth of spe-
cies influences their ability to adjust to changes in resource availabil-
ity (Slatyer et al., 2013). For instance, the ecological niche breadth 
of species is related to their habitat niche breadth and their dietary 
niche breadth (Figure 1c,d). While dietary flexibility is difficult to 
quantify, response traits related to food handling and uptake may be 
used to estimate the flexibility of species to switch between dietary 
resources (Bender et al., 2017).

Knowledge on relationships between species’ sensitivity and 
adaptive capacity at the assemblage level may inform us about 
the potential responses of entire species’ assemblages to climate 
change. Previous work suggests that species’ sensitivity and adap-
tive capacity differ among species assemblages depending on the 
environmental context. According to Janzen's climate variability 
hypothesis, species from variable climates have broader thermal 
niches than species from stable climates (Ghalambor et al., 2006; 
Janzen, 1967). Accordingly, the thermal tolerance of animal spe-
cies tends to increase with increasing latitude and elevation (Fang 
et al., 2019; Khaliq et al., 2014; Shah et al., 2017). Similarly, geo-
graphical patterns of species’ dispersal ability and ecological niche 
breadth have been investigated. For instance, a recent study re-
vealed a positive latitudinal trend of average wing pointedness, a 
proxy for dispersal ability, in avian assemblages globally, possibly 
driven by increasing climate variability with latitude (Sheard et al., 
2020). Furthermore, the latitude–niche breadth hypothesis pre-
dicts an increase in species’ ecological niche breadth with latitude, 
but studies that have tested for latitudinal gradients in species’ 

susceptibility to climate change and potential impacts of climate change on diverse 
species assemblages.

K E Y W O R D S
birds, climate change, climatic niche, dietary niche, dispersal, frugivory, functional traits, 
habitat niche, mountain, vulnerability
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    |  1125NOWAK et al.

F I G U R E  1  Response traits related to species’ sensitivity to climate change, here climatic niche breadth, (a) and their ecological adaptive 
capacity, here dispersal ability, dietary niche breadth in terms of fruit choice and habitat niche breadth, (b–d). (a) A species’ sensitivity 
to climate change can be approximated by its climatic niche breadth since a species with a broad climatic niche (generalist) has a higher 
chance that changing climates remain within its niche than a species with a narrow climatic niche (specialist). We estimated the climatic 
niche breadth of the avian frugivores based on species’ current occurrences and climate data across South America as a hypervolume in a 
two-dimensional climate space. (b–d) Important aspects of a species’ adaptive capacity are the species’ ability to shift its range and to utilize 
a wide range of resources. (b) A species’ ability to shift its range influences whether the species can track suitable conditions and relates to 
the species’ dispersal ability. We approximated the dispersal ability of the avian frugivores by their wing pointedness measured on museum 
specimens. (c) A species’ dietary niche breadth influences whether the species can tolerate shifts in food resources. For avian frugivores, 
this can be estimated by their bill width, which influences the range of fruit sizes the species can feed on. (d) Similarly, a species’ habitat 
niche breadth influences whether the species can tolerate shifts in available habitat. We approximated the habitat niche breadth of the avian 
frugivores as the number of habitat classes the species are reported to occur in. The illustration of avian wing morphology is adapted from 
Sheard et al. (2020)
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1126  |    NOWAK et al.

ecological niche breadth report inconsistent results (Schleuning 
et al., 2012; Vázquez & Stevens, 2004). Despite the few exist-
ing studies of large-scale variation in species’ response traits, 
relationships between species’ sensitivity to climate change and 
trait-based measures of their adaptive capacity have not yet been 
explicitly tested along environmental gradients.

Evidence is mixed for relationships between sensitivity and 
adaptive capacity at the species level. For example, habitat niche 
breadth of European breeding birds has been reported to be posi-
tively related to their dietary niche breadth and negatively related 
to their climatic niche breadth (Reif et al., 2016), while habitat niche 
breadth and climatic niche breadth were positively related in a 
study focussing on French breeding birds (Barnagaud et al., 2012). 
Resolving such differences is important because the relationship be-
tween species’ sensitivity and adaptive capacity determines poten-
tial trade-offs in species’ overall ability to respond to climate change. 
For instance, if species that are highly sensitive to climate change 
also have a low adaptive capacity, then their overall susceptibility to 
climate change might be higher than estimated from their climatic 
niche alone (Foden et al., 2013).

Here, we aim to identify the relationship between species’ sen-
sitivity to climate change and response traits associated with spe-
cies’ ecological adaptive capacity. We assess this relationship (i) in 
different species assemblages along an elevational gradient and 
(ii) across the entire species pool. We focus on 215 avian frugivore 
species co-occurring along a Neotropical elevational gradient with a 
highly diverse avifauna. Our focus on avian frugivores, a function-
ally homogeneous ecological group, allows trait-based approaches 
to be applied across a large set of species. Furthermore, avian fru-
givores play crucial roles as seed dispersers, especially in the trop-
ics (Jordano, 2014). To approximate species’ sensitivity to climate 
change, we quantify species’ climatic niche breadth as a hypervol-
ume based on their current occurrences and climate conditions 
across South America. To approximate species’ ecological adaptive 
capacity, we make use of avian morphological traits related to disper-
sal ability and dietary niche breadth in terms of fruit choice (Bender 
et al., 2017; Dawideit et al., 2009; Sheard et al., 2020). In addition, 
we include a measure of species’ habitat niche breadth (Figure 1b–d).

(i) We expect species’ climatic niche breadth in frugivore as-
semblages to increase with increasing elevation because increasing 
diurnal temperature variability should favour species with broad cli-
matic niches at high elevations (i.e. the climate variability hypothe-
sis; Ghalambor et al., 2006; Janzen, 1967). Furthermore, we expect 
species’ dispersal ability and ecological niche breadth to decrease 
with increasing elevation because the low diversity and availability 
of fruit resources at high elevations might promote bird species with 
round wings and narrow ecological niches (Dehling, Töpfer, et al., 
2014). (ii) Across species, we expect a negative relationship between 
climatic niche breadth and traits related to adaptive capacity. While 
there is no clear a priori support for this expectation, sensitivity and 
adaptive capacity might trade off in species that have survived past 
climate change; that is, species might either have a broad climatic 
niche or a high adaptive capacity.

2  |  METHODS

2.1  |  Study system and assemblages of frugivorous 
birds

Our study system was an elevational gradient ranging from 300 to 
3600 m.a.s.l. located in the Manú biosphere reserve in south-east 
Peru. The gradient is covered in lowland rain forest (<500 m.a.s.l.), 
montane rain forest (~500–1500  m.a.s.l.), cloud forest (~1500–
3000  m.a.s.l) and elfin forest (>3000  m.a.s.l.). At the tree line 
(~3500 m.a.s.l.), elfin forest is interrupted by patches of Puna grass-
land (Patterson et al., 1998). All forest types are intact primary for-
ests. Precipitation is high along the entire gradient (annual rainfall 
approximately 1500–4800 mm, mean = 2709 mm), while tempera-
ture declines with increasing elevation (mean annual temperature 
ranges from 24.3°C at 500 m.a.s.l. to 7.3°C at 3500 m.a.s.l.; Girardin 
et al., 2010, 2013).

We focussed on frugivorous bird species, defined as those spe-
cies who consume fruit as a main part of their diet (Dehling, Fritz, 
et al., 2014; obligate and partial frugivores as classified by Kissling 
et al., 2007). This classification implies that species may also use 
other food resources (e.g. invertebrates), but depend on fruits as 
their main diet at least in specific seasons or parts of their life. Based 
on this classification, we identified 245 frugivorous species along 
the Manú gradient. To ensure unbiased estimates of species’ climatic 
niches (see description below), we excluded species with strong 
seasonal migrations. Furthermore, we excluded ground-dwelling 
species, because their dispersal behaviour cannot be approximated 
by wing shape (see the description below). These steps resulted in 
a set of 215  species, for which we recorded the local elevational 
ranges (i.e. minimum and maximum elevation) based on local check-
lists (Dehling, Fritz, et al., 2014; Dehling et al., 2013; Merkord, 2010; 
Walker et al., 2006). Frugivorous bird assemblages were determined 
every 300  m of elevation following previous work (Dehling, Fritz, 
et al., 2014).

2.2  |  Sensitivity: climatic niche breadth

We estimated species’ climatic niche breadth based on bioclimatic 
variables and species’ occurrences across South America; that is, we 
quantified species’ realized climatic niche breadth across the entire 
continent (Figure 1a). We downloaded occurrence data for each bird 
species from the Global Biodiversity Information Facility (GBIF.org, 
2017) and subjected the data to a comprehensive quality check. 
First, we excluded data entries with a longitude of zero and data 
entries for which the country provided by the author of the data 
did not resemble the country in which the coordinates were located. 
Second, we compared the GBIF occurrences to species’ extent-of-
occurrence range maps (BirdLife International & Handbook of the 
Birds of the World, 2017) and removed outliers, that is occurrence 
points >500 km away from the range map margins. Finally, we only 
analysed species for which at least 20 spatially unique occurrence 
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    |  1127NOWAK et al.

points were available (every latitude–longitude combination was 
counted only once, regardless of how many observations were re-
ported from that point) and where these points covered the species’ 
range maps reasonably well.

The final set of 215 bird species had on average 437 ± 431 spa-
tially unique occurrence points (mean  ±  SD) ranging from 24 to 
3467  spatially unique occurrence points per species. Only 11 of 
these species had fewer than 50 spatially unique occurrence points, 
and those 11 species were mostly small-ranged. We computed range 
coverage and geographical bias scores of the cleaned GBIF data in 
comparison with geographical range maps from BirdLife applying 
the method of Meyer et al. (2016). These metrics are based on the 
great-circle distance (km) of 1000 random points, placed across 
each geographical range map, to their geographically closest GBIF 
occurrence records (Meyer et al., 2016). The average range cover-
age of the cleaned GBIF data was −125.7 ± 65.3 km (mean ± SD, 
n = 215 species), and their average geographical bias score was 67.1 
± 53.5. These values indicate reasonable range coverage and low 
geographical bias (see Figures S1 and S2, Table S3). For comparison, 
Meyer et al. (2016) reported a much larger bias across mammals 
globally (average range coverage −205.5 ± 375.5 km).

We downloaded current bioclimatic data (1979–2013) from the 
climatologies at high resolution for the Earth's Land Surface Areas 
data (CHELSA; Karger et al., 2017) at a resolution of 30 arcsec. We 
selected 17 bioclimatic variables that capture minimum, maximum 
and mean values, as well as diurnal and seasonal variation of tem-
perature and precipitation across South America (Table S1). The 
CHELSA data have the advantage of including orographic predictors 
in the precipitation estimation, thereby enhancing rainfall estimates 
based on interpolated weather station data, especially in mountain-
ous regions (Karger et al., 2017).

Using the cleaned set of occurrence points and the bioclimatic 
variables, we estimated each species’ climatic niche breadth as a 
two-dimensional hypervolume following Blonder et al. (2014). To 
reduce the number of dimensions before the computation of the cli-
matic niche breadth of each species (as suggested by Blonder et al., 
2014), we performed a principal component analysis (PCA) across 
the values of the 17 bioclimatic variables at all spatially unique oc-
currence points of the 215 bird species across South America. We 
used the first two axes of this PCA (capturing 76.59% of the total 
variation in the occurrence data; Table S1) and computed each spe-
cies’ climatic niche breadth as a two-dimensional hypervolume in 
this PCA space (Blonder et al., 2014). The first principal component 
was positively correlated with bioclimatic variables related to mean 
annual temperature and annual precipitation, and negatively cor-
related with seasonality in temperature and precipitation, and with 
mean diurnal range (Table S1). The second principal component was 
positively correlated with variables related to annual precipitation 
and negatively correlated with variables related to mean annual 
temperature, seasonality in temperature and precipitation, and with 
mean diurnal range. The hypervolume function performs a kernel 
density estimation and volume measurement using a Monte Carlo 
importance sampling approach (Blonder et al., 2014). We applied 

Gaussian kernel density and Silverman's bandwidth estimation (de-
fault settings in R package “hypervolume”).

To test whether the two-dimensional hypervolume is a robust 
estimate of species’ climatic niche breadth, we compared it with 
the estimates based on three- and four-dimensional hypervolumes 
(including the first three and four principal component axes, re-
spectively) and with the estimates based on a different method of 
climatic niche quantification (Broennimann et al., 2012; details in 
Supporting Information text S1). The estimates of species’ climatic 
niche breadth based on these different approaches were strongly 
positively correlated (Pearson's r ranging from .54 to .92, p < .001; 
Table S2), indicating robust and consistent estimation of climatic 
niche breadth across species.

2.3  |  Adaptive capacity: dispersal ability, dietary 
niche breadth, and habitat niche breadth

We estimated the dispersal ability and the dietary niche breadth of 
the 215 selected frugivorous bird species with a trait-based approach, 
that is based on their wing pointedness and bill width (Figure 1b,c). 
The wing pointedness of bird species is related to their natal dis-
persal distances and their capacity to fly long distances (Dawideit 
et al., 2009; Santini et al., 2019; Winkler & Leisler, 1992). Therefore, 
measures of wing pointedness can serve as a proxy for dispersal abil-
ity (Sheard et al., 2020). The dietary niche breadth of frugivorous 
birds is related to species’ bill width since broad-billed frugivorous 
species can feed on a wider range of fruit sizes than narrow-billed 
species and are therefore more flexible in their fruit choice (Bender 
et al., 2017; Wheelwright, 1985). This trait-based approach is justi-
fied since all species in our dataset consume fruits as a main part 
of their diet (Dehling, Fritz, et al., 2014; Kissling et al., 2009). Wing 
pointedness and bill width were measured for each species on mu-
seum specimens following measurement protocols from Eck et al. 
(2011) aiming at measuring two female and two male specimens per 
species (dataset from Dehling, Fritz, et al., 2014). Wing pointedness 
was measured as Kipp's index, which is the distance from the tip of 
the first secondary feather to the tip of the longest primary feather 
(mm) divided by wing length (mm; equivalent to the hand-wing 
index; Eck et al., 2011; Sheard et al., 2020). The average number of 
specimens measured per species was 3.6 ± 0.9 (mean ± SD). Only for 
three of the 215 bird species, measurements were based on a single 
specimen (list of specimens in Supporting Information text S2). For 
all further analyses, we computed mean values of wing pointedness 
and bill width for each species (Table S3).

We estimated the habitat niche breadth of all 215 frugivorous 
bird species as the number of habitat classes in which a species 
was recorded. This reflects the difference between species that 
are spread across many habitats (habitat generalists) and those re-
stricted to a few habitats (habitat specialists; Figure 1d). These data 
are based on species’ habitat use (binary) among 11 habitat classes 
representing a gradient from forested to open habitats, derived from 
the International Union for Conservation of Nature (IUCN) habitat 
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1128  |    NOWAK et al.

classification version 3 (dataset from Barnagaud et al., 2017; addi-
tional information in Supporting Information text S3). The climatic 
niche breadth and the traits related to species’ adaptive capacity 
were estimated at the species level and are not specific to the stud-
ied elevational gradient.

2.4  |  Relationships of species' sensitivity and trait-
based adaptive capacity with elevation

We assessed relationships of species’ sensitivity and traits related 
to adaptive capacity with elevation by fourth-corner analyses. The 
fourth-corner analysis was developed to test for relationships be-
tween environmental variables (here elevation as a surrogate for 
changing abiotic and biotic conditions) and species’ traits based on 
species’ occurrences (here presence/absence of bird species at each 
of the 12 elevational levels, 300–3600  m.a.s.l.; Dray & Legendre, 
2008). Specifically, the fourth-corner analysis assesses the rela-
tionships between species’ occurrences, environmental variables 
at these sites and species traits. The environmental variables and 
species traits used in our analysis are continuous. Therefore, the 
relationship is assessed as a Pearson correlation coefficient. The 
significance of the relationship is tested with a permutation test, 
that is a randomization procedure; we applied permutation model 
6 to avoid inflated type I error (Dray & Legendre, 2008). We per-
formed a separate fourth-corner analysis for each of the traits. 
Since we expected saturating trends with increasing elevation, we 
ln-transformed elevation prior to the analyses. When elevation was 
not ln-transformed prior to the analysis, the fourth-corner analyses 
yielded similar results (Table S4).

2.5  |  Relationships between sensitivity and trait-
based adaptive capacity across species

We tested for associations between sensitivity and trait-based 
adaptive capacity across species with phylogenetic generalized least 
square (PGLS) models. PGLS models take into account the phyloge-
netic covariance among species (Freckleton et al., 2002). We based 
the phylogenetic analyses on a global phylogeny for bird species 
(Jetz et al., 2012; see details in Supporting Information text S4). We 
applied PGLS models since bill width and wing pointedness showed 
strong, significant phylogenetic signal (Pagel's lambda  =  1.00, 
p = .001, respectively; Freckleton et al., 2002). For climate and habi-
tat niche breadth, lambda was 0.35 (p =  .001) and 0.30 (p =  .006), 
respectively, suggesting not only a significant phylogenetic signal as 
lambda differed from 0 but also that these attributes evolved ac-
cording to a process in which the effect of the phylogeny was weaker 
than in the Brownian motion model (as lambda is expected to be 1 
under the Brownian motion model; Freckleton et al., 2002). We fit-
ted a PGLS model each for wing pointedness, bill width and habitat 
niche breadth (as measures of a species’ adaptive capacity) against 
climatic niche breadth (the sensitivity measure) to control for these 

phylogenetic signals. Since the habitat niche breadth is represented 
by count data, we ln-transformed it before fitting the model. In these 
PGLS models, we set delta and kappa to one and estimated lambda 
by maximum likelihood. For wing pointedness, the model was not 
able to yield a maximum-likelihood estimate for lambda due to a flat 
likelihood surface, so we set lambda to 1 in this model.

All analyses were performed in R version 3.5.0 (R Core Team, 
2018).

3  |  RESULTS

3.1  |  Relationships of species' sensitivity and trait-
based adaptive capacity with elevation

The fourth-corner analyses revealed a significant positive relation-
ship between elevation and species’ climatic niche breadth (Table 1). 
Specifically, species’ climatic niche breadth increased until about 
1200  m.a.s.l. and showed only little change between 1200 and 
3600 m.a.s.l. (Figure 2a). In contrast, wing pointedness and bill width 
(reflecting species’ dispersal ability and dietary niche breadth) de-
creased significantly with increasing elevation (Table 1, Figure 2b,c). 
Species’ habitat niche breadth showed no significant association 
with elevation (Table 1, Figure 2d). These results suggest that spe-
cies’ sensitivity to climate change and their trait-based adaptive ca-
pacity decrease with increasing elevation.

3.2  |  Relationships between sensitivity and trait-
based adaptive capacity across species

Across the species pool of the entire elevational gradient, there 
were no significant relationships between sensitivity and trait-based 
adaptive capacity when accounting for phylogenetic relationships 
among species (Table 2). Species varied widely in the traits related 
to adaptive capacity across the entire spectrum of species’ climatic 
niche breadths (Figure 3). This indicates that sensitivity and trait-
based adaptive capacity vary independently across species.

TA B L E  1  Relationships between elevation (ln-transformed) and 
traits related to species’ sensitivity to climate change (climatic niche 
breadth) and their ecological adaptive capacity (wing pointedness, 
dietary niche breadth and habitat niche breadth)

Response variable Pearson's r p-Value

Climatic niche breadth .35 .002

Wing pointedness −.12 .046

Bill width −.12 .046

Habitat niche breadth .03 .598

Note: We performed a separate fourth-corner analysis for each of 
the traits; this tests the relationships based on species’ occurrences 
at 12 elevational levels every 300 m along the Manú gradient (300–
3600 m.a.s.l.). Elevation was ln-transformed prior to the analyses. See 
Table S4 for results when elevation was not transformed.
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Interestingly, different bird orders differed in their sensitivity 
and trait-based adaptive capacity (Figure 3). For instance, the cli-
matic niche breadth of Passeriformes (perching birds, n = 148 spe-
cies) and Trogoniformes (trogons, n  =  9) varied from narrow to 
broad. However, Passeriformes had round to moderately pointed 
wings and narrow to moderately broad bills, while Trogoniformes 
were characterized by pointed wings and moderate bill width. 
Contrastingly, Psittaciformes (parrots, n  =  26) and Piciformes 
(woodpeckers, n  =  21) displayed mostly narrow to moderately 
broad climatic niches. Yet, Psittaciformes were among the species 
with the most pointed wings, while Piciformes had more rounded 
wings.

4  |  DISCUSSION

We tested how species’ sensitivity to climate change (i.e. their cli-
matic niche) and their trait-based ecological adaptive capacity vary 
along an elevational gradient and covary across species. We found 
that species’ climatic niche breadth increased with increasing eleva-
tion, while trait-based dispersal ability and dietary niche breadth de-
creased with increasing elevation. This indicates that the sensitivity 
of avian frugivore species to changing climates might be highest in 
lowland assemblages, while highland assemblages host avian frugi-
vore species that might have a comparatively low adaptive capac-
ity in terms of their dispersal ability and fruit resource use. Across 

F I G U R E  2  Elevational patterns of 
species’ sensitivity to climate change (a) 
and of their trait-based ecological adaptive 
capacity (b–d). Shown are patterns of 
species’ (a) climatic niche breadth, (b) 
wing pointedness (as a proxy for species’ 
dispersal ability), (c) bill width (as a proxy 
for species’ dietary niche breadth) and 
(d) habitat niche breadth (i.e. number 
of used habitat types) along elevation. 
Horizontal lines represent each species’ 
elevational range in the study area (from 
minimum to maximum elevation; n = 215 
avian frugivores). Vertical lines indicate 
the 12 species assemblages studied at the 
different elevations
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Response variable Intercept/predictor Estimate Std. error t-Value p-Value

Wing pointedness Intercept 0.33 0.56 0.59 .56

Climatic niche breadth 0.04 0.03 1.28 .20

Bill width Intercept 0.48 0.66 0.73 .47

Climatic niche breadth −0.02 0.03 −0.67 .50

Habitat niche 
breadth

Intercept 0.04 0.37 0.10 .92

Climatic niche breadth 0.06 0.07 0.87 .38

Note: All traits were scaled and centred before the analyses to ensure comparability of the model 
estimates. Adjusted R² of all models was <.01.

TA B L E  2  Results of phylogenetic 
generalized least square (PGLS) models 
fitted to test for associations between 
species’ sensitivity (climatic niche breadth) 
and aspects of their ecological adaptive 
capacity (wing pointedness, bill width and 
habitat niche breadth) across species
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the species pool and accounting for phylogenetic covariation, sen-
sitivity to climate change and trait-based adaptive capacity varied 
independently.

4.1  |  Relationships of species' sensitivity and trait-
based adaptive capacity with elevation

In line with the climate variability hypothesis (Janzen, 1967) and our 
expectations, we found a positive relationship between species’ 
climatic niche breadth and elevation. This relationship is also con-
sistent with Rapoport's rule, which states that species’ range sizes 
increase with increasing elevation because of a greater tolerance for 
climatic variation in highland species (Stevens, 1989, 1992). Along 
the Manú gradient, increasing diurnal temperature variation with 
elevation might favour avian frugivore species with broader ther-
mal tolerances at higher elevations (Ghalambor et al., 2006; Rapp 
& Silman, 2012). Accordingly, high-elevation bird species in the 
Peruvian Andes have been reported to be more resistant to cold 
temperatures, but equally capable to withstand high temperatures 
compared with species from lower elevations (Londoño et al., 2015). 
The Glossy-black Thrush (Turdus serranus) and the Hooded Mountain 
Tanager (Buthraupis montana) are examples of high-elevation species 
at the Manú gradient with rather broad climatic niches. Among the 
lowland species with more narrow climatic niches are the Purple-
throated Cotinga (Porphyrolaema porphyrolaema) and the Opal-
rumped Tanager (Tangara velia).

The negative relationships of wing pointedness and bill width 
with elevation were in line with our expectations. Many tropical avian 
frugivore species are highly dependent on fruit in their diet (Kissling 
et al., 2009). Therefore, the significant but weak relationships we 

found might be due to bottom-up effects of the fruit plant assem-
blages on the avian frugivores and their traits (Vollstädt et al., 2017). 
Specifically, predominantly low plant heights and small fruit sizes at 
high elevations of the Manú gradient might promote the occurrence 
of round-winged and narrow-billed avian frugivores (Dehling, Töpfer, 
et al., 2014; Pigot et al., 2016). This likely relates to trait matching 
between interacting resource and consumer species, specifically a 
previously reported positive relationship between wing pointedness 
and plant height in plant–frugivore interactions (Bender et al., 2018; 
Dehling, Töpfer, et al., 2014). Similarly, bill width and fruit width of 
interacting avian frugivore and fruit plant species usually correspond 
closely (Bender et al., 2018; Burns, 2013). In addition, the decreasing 
availability of fruit resources with increasing elevation might lead to 
environmental filtering of bird traits resulting in low trait diversity of 
high-elevation bird assemblages (Hanz et al., 2019). Among the high-
elevation species with rather round wings and narrow bills are the 
Blue-capped Tanager (Thraupis cyanocephala) and the Blue-winged 
Mountain Tanager (Anisognathus somptuosus), while the Red-bellied 
Macaw (Orthopsittaca manilata) is an example of a pointed-winged, 
broad-billed lowland species.

The opposing elevational patterns of climatic niche breadth on 
the one hand and trait-based dispersal ability and dietary niche 
breadth on the other hand suggest different mechanisms of how 
species from low- vs. high-elevation assemblages might respond to 
contemporary climate change. The narrow climatic niches of avian 
frugivore species from lowland assemblages suggest that lowland 
species might be sensitive to climate change. Therefore, lowland 
species may require shifting their elevational ranges upslope to 
track their suitable climate under contemporary climate change. 
Particularly, lowland species with pointed wings might be well 
equipped for such range shifts (Dawideit et al., 2009). Furthermore, 

F I G U R E  3  Associations between sensitivity to climate change (climatic niche breadth) and trait-based adaptive capacity across species. 
Shown are associations between climatic niche breadth and (a) wing pointedness (as a proxy for species’ dispersal ability), (b) bill width (as 
a proxy for the dietary niche breadth of avian frugivores), and (c) habitat niche breadth (i.e. the number of used habitat types). Each dot 
represents a species (n = 215), and colours represent the different orders of frugivorous birds
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the flexibility in fruit choice of broad-billed lowland frugivores might 
enhance their ability to find matching fruit resources at higher eleva-
tions (Wheelwright, 1985). However, while upslope range shifts are 
a plausible strategy for species occurring at the base of the Andes, 
central Amazonian taxa would need to overcome several hundred 
kilometres to reach higher elevations. In comparison, the compar-
atively broad climatic niches of avian frugivores in assemblages at 
high elevations of the Manú gradient suggest that these species 
might be less sensitive to changing climates than species from low 
elevations. However, the ability of high-elevation species to disperse 
and shift their ranges might be limited due to their rather rounded 
wings (Dawideit et al., 2009). Moreover, their relatively narrow bills 
might restrict them to feed on small fruits making them less flexible 
to respond to changes in fruit resource availability (Wheelwright, 
1985).

Bird species at tropical elevational gradients have already shifted 
their elevational ranges upslope under contemporary climate change 
(Forero-Medina et al., 2011; Freeman & Class Freeman, 2014). Thus 
far, tropical lowland bird species tend to expand their elevational 
ranges upslope (i.e. they shift their upper elevational range limit 
upslope, while their lower elevational range limit stays unchanged), 
suggesting that they are able to tolerate increasing temperatures, at 
least to some extent (Freeman, Scholer, et al., 2018). This might indi-
cate that occurrence-derived thermal tolerances of tropical lowland 
species underestimate species’ actual thermal tolerances, because 
the climatic niche estimates are truncated at the lowest elevations 
(Feeley & Silman, 2010). Recently reported high relative abundances 
of Bornean bird species at sea level further support the hypothesis 
of truncated climatic niches of tropical lowland species (Burner et al., 
2019).

In line with our findings, a recent meta-analysis revealed that 
high-elevation species globally have shifted their elevational ranges 
upslope at a lower rate than low-elevation species under contempo-
rary climate change. This finding indeed suggests broader climatic 
niches of high-elevation species compared with lowland species 
(Mamantov et al., 2021). However, avian frugivore assemblages at 
the highest elevations are restricted by abiotic and biotic barriers, 
such as the tree line. Therefore, species occurring close to such 
barriers have to contract their elevation ranges because they can-
not easily expand their ranges to higher elevations (La Sorte & Jetz, 
2010). This phenomenon, often termed “mountaintop extinctions,” 
has been rather widely reported under contemporary climate change 
and suggests that highland species face an elevated risk from rapid 
global warming (Freeman, Lee-Yaw, et al., 2018; Freeman, Scholer, 
et al., 2018; Pacifici et al., 2017). In addition, ongoing changes in 
plant assemblages at high elevations (Feeley et al., 2011; Morueta-
Holme et al., 2015) could imply that highland frugivores might have 
to switch to other food resources than fruits, for example to inverte-
brates (Carnicer et al., 2009), given their apparently limited capacity 
to feed on various fruit types. Current evidence therefore suggests 
that despite their comparably broad climatic niches, high-elevation 
species are highly susceptible to adverse consequences from con-
temporary climate change.

4.2  |  Relationships between sensitivity and trait-
based adaptive capacity across species

Contrary to our expectation, the sensitivity to climate change and the 
three metrics of trait-based adaptive capacity were unrelated across 
the avian frugivore species at the Manú gradient. Accordingly, we 
could not identify trait syndromes of species with coherent patterns 
in terms of their sensitivity and trait-based adaptive capacity. This re-
sult was emphasized by the large variation in trait values within bird 
orders, for example the perching birds (Passeriformes). Generally, 
some species with pointed wings and broad bills were characterized 
by broad climatic niches, for example the Golden-Headed Quetzal 
(Pharomachrus auriceps) and the Military Macaw (Ara militaris). Other 
species had broad climatic niches, but round wings or narrow bills, 
for example the Bronze-Green Euphonia (Euphonia mesochrysa) and 
the Spotted Tanager (Tangara punctata). Some species with nar-
row climatic niches had pointed wings or broad bills, for example 
the Black-Tailed Trogon (Trogon melanurus) and the Green-Backed 
Trogon (Trogon viridis). These species-specific differences in sensitiv-
ity and trait-based adaptive capacity within the group of avian frugi-
vores coincide with the observation that individual species can differ 
greatly in response to climate change (Chen et al., 2011; MacLean & 
Beissinger, 2017; Moritz et al., 2008). Our findings reveal that even 
within ecologically homogeneous groups of species, such as avian 
frugivores, responses to climate change are likely to be idiosyncratic.

Interestingly, our findings differ from a global study reporting in-
creasing average wing pointedness with increasing climate variabil-
ity (Sheard et al., 2020). This suggests differences in this relationship 
between global and local scales, possibly influenced by our exclusion 
of migratory species from the analysis. Furthermore, we could not 
confirm a positive or negative relationship between climatic niche 
breadth and habitat niche breadth across avian species (Barnagaud 
et al., 2012; Reif et al., 2016), suggesting that these relationships 
differ between tropical assemblages with a high trait diversity com-
pared with less diverse European bird assemblages (Barnagaud et al., 
2012; Kissling et al., 2009; Reif et al., 2016). Together, this indicates 
that relationships between species’ sensitivity and trait-based eco-
logical adaptive capacity are context-dependent. We encourage fu-
ture studies to test whether species’ sensitivity to climate change is 
associated with other aspects of species’ adaptive capacity, for ex-
ample with other parts of species’ ecological niches, or traits related 
to their evolutionary potential (Boutin & Lane, 2014). Moreover, ap-
plying comprehensive trait-based assessments to other taxonomic 
groups might yield a more general understanding of the relationship 
between species’ sensitivity to climate change and adaptive capacity.

5  |  CONCLUSIONS

We show that the sensitivity of avian frugivores to climate change 
(i.e. their climatic niche breadth) and their trait-based ecologi-
cal adaptive capacity vary independently along elevation and 
across species. Our results emphasize that focussing only on the 
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sensitivity of species to climate change can be insufficient to 
predict potential effects of future climate change on species as-
semblages. Trait-based approaches can provide a ready way to 
assess other ecological dimensions of species’ susceptibility to cli-
mate change. Such integrated trait-based assessments of climate 
change impacts on diverse species assemblages can be applied to 
other species groups and can inform measures of biodiversity con-
servation in a changing world.
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