39 research outputs found

    A Laplace variational iteration strategy for the solution of differential equations

    Get PDF
    AbstractThe aim of this article is to introduce a novel Laplace variational numerical scheme, based on the variational iteration method (VIM) and Laplace transform, for the solution of certain classes of linear and nonlinear differential equations. The strategy is outlined and then illustrated through a number of test examples. The results assert that this alternative approach yields accurate results, converges rapidly and handles impulse functions and the ones with discontinuities

    The shrinking instability of toroidal liquid droplets in the Stokes flow regime

    Get PDF
    We analyze the stability and dynamics of toroidal liquid droplets. In addition to the Rayleigh instabilities akin to those of a cylindrical droplet there is a shrinking instability that is unique to the topology of the torus and dominates in the limit that the aspect ratio is near one (fat tori). We first find an analytic expression for the pressure distribution inside the droplet. We then determine the velocity field in the bulk fluid, in the Stokes flow regime, by solving the biharmonic equation for the stream function. The flow pattern in the external fluid is analyzed qualitatively by exploiting symmetries. This elucidates the detailed nature of the shrinking mode and the swelling of the cross-section following from incompressibility. Finally the shrinking rate of fat toroidal droplets is derived by energy conservation.Comment: 6 pages, 7 figure

    On an asymptotic estimate of the nn-loop correction in perturbative QCD

    Full text link
    A recently proposed method of estimating the asymptotic behaviour of QCD perturbation theory coefficients is critically reviewed and shown to contain numerous invalid mathematical operations and unsubstantiated assumptions. We discuss in detail why this procedure, based solely on renormalization group (RG) considerations and analyticity constraints, cannot lead to such estimates. We stress the importance of correct renormalization scheme (RS) dependence of any meaningful asymptotic estimate and argue that the unambiguous summation of QCD perturbation expansions for physical quantities requires information from outside of perturbation theory itself.Comment: PRA-HEP-92/17, Latex, 20 pages of text plus 5 figures contained in 5 separate PS files. Four of them (corresponding to Figs.1,2,3,5) are appended at the end of this file, the (somewhat larger one) corresponding to Fig.4 can be obtained from any of the mentioned E-mail addresses upon request. E-mail connections: J. Chyla - [email protected]) or h1kchy@dhhdesy3 P. Kolar - [email protected]

    Wrapped branes with fluxes in 8d gauged supergravity

    Get PDF
    We study the gravity dual of several wrapped D-brane configurations in presence of 4-form RR fluxes partially piercing the unwrapped directions. We present a systematic approach to obtain these solutions from those without fluxes. We use D=8 gauged supergravity as a starting point to build up these solutions. The configurations include (smeared) M2-branes at the tip of a G_2 cone on S^3 x S^3, D2-D6 branes with the latter wrapping a special Lagrangian 3-cycle of the complex deformed conifold and an holomorphic sphere in its cotangent bundle T^*S^2, D3-branes at the tip of the generalized resolved conifold, and others obtained by means of T duality and KK reduction. We elaborate on the corresponding N=1 and N=2 field theories in 2+1 dimensions.Comment: 32 pages, LateX, v2: minor changes, reference added, v3: section 3.5.2 improve

    Calculations of binding energies and masses of heavy quarkonia using renormalon cancellation

    Full text link
    We use various methods of Borel integration to calculate the binding ground energies and masses of b-bbar and t-tbar quarkonia. The methods take into account the leading infrared renormalon structure of the hard+soft part of the binding energies E(s), and of the corresponding quark pole masses m_q, where the contributions of these singularities in M(s) = 2 m_q + E(s) cancel. Beforehand, we carry out the separation of the binding energy into its hard+soft and ultrasoft parts. The resummation formalisms are applied to expansions of m_q and E(s) in terms of quantities which do not involve renormalon ambiguity, such as MSbar quark mass, and alpha_s. The renormalization scales are different in calculations of m_q, E(s) and E(us). The MSbar mass of b quark is extracted, and the binding energies of t-tbar and the peak (resonance) energies for (t+tbar) production are obtained.Comment: 23 pages, 8 double figures, revtex4; the version to appear in Phys.Rev.D; extended discussion between Eqs.(25) and (26); the paragraph between Eqs.(32) and (33) is new and explains the numerical dependence of the residue parameter on the factorization scale; several new references were added; acknowledgments were modified; the numerical results are unchange
    corecore