
Applied Mathematics Letters 25 (2012) 2298–2305

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

A Laplace variational iteration strategy for the solution of
differential equations
S.A. Khuri ∗, A. Sayfy
Department of Mathematics and Statistics, American University of Sharjah, United Arab Emirates

a r t i c l e i n f o

Article history:
Received 13 February 2012
Received in revised form 13 June 2012
Accepted 15 June 2012

Keywords:
Laplace transform
Variation iteration method
Nonlinear differential equations

a b s t r a c t

The aim of this article is to introduce a novel Laplace variational numerical scheme, based
on the variational iterationmethod (VIM) and Laplace transform, for the solution of certain
classes of linear and nonlinear differential equations. The strategy is outlined and then
illustrated through a number of test examples. The results assert that this alternative
approach yields accurate results, converges rapidly and handles impulse functions and the
ones with discontinuities.
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1. Introduction

In this article, a novel Laplace variational iteration strategy, based on the (VIM) and Laplace transform, is presented
for the exact/numerical solution of linear and nonlinear differential equations [1]. Recently, there has been extensive
research interest in the (VIM) for solving a wide spectrum of equations including algebraic, differential, partial-differential,
functional-delay and integro-differential equations [2–6]. The main thrust of the method is to construct a correction
functional using a general Lagrange multiplier chosen in a proper way that its correction solution is improved with respect
to the initial trial function.

The published results on the (VIM) failed to point out that, in numerous cases, the integral of the correction functional
is a convolution, thus manipulation of Laplace transform ought to come into place. In this paper, we address this deficiency
by introducing an alternative Laplace correction functional and expressing the integral as a convolution. This approach can
tackle functions with discontinuities as well as impulse functions effectively. The method is implemented for a number of
examples and the results confirm the simplicity, suitability and effectiveness of this technique using only few terms of the
iterative scheme.

The balance in this paper is as follows. In Section 2, the Laplace transform variational iterationmethod will be presented.
In Section 3, the approach is implemented for few test examples. Section 4 includes a conclusion that briefly summarizes
the results.

2. Laplace transform variational iteration method

Consider the following general nonlinear differential equation:

Ly(x) + Ny(x) = f (x), (2.1)
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where L is a linear operator, N is a nonlinear operator and f (x) is a known analytical function. Before we begin the
implementation, we shall present the variational iteration method scheme in constructing the correction functional.
The (VIM) admits the use of the correction functional for Eq. (2.1) given by

yn+1(x) = yn(x) +

 x

0
λ(ξ)


Lyn(ξ) + Nỹn(ξ) − f (ξ)


dξ, n = 0, 1, 2, . . . , (2.2)

whereλ is a general Lagrangemultiplier,which can be identified optimally via the variational theory. The subscript ndenotes
the nth approximation and ỹn is a restricted variation (δỹn = 0). In a wide range of problems that appear in the literature,
the general form of Lagrange multiplier is found to be of the form

λ = λ(x − ξ).

In this article, we will make the assumption that λ is expressed in this latter way. In such a case, the integration is basically
the convolution; hence Laplace transform is appropriate to use. Operating with Laplace transform on both sides of (2.2) the
correction functional will be constructed in the following manner:

L [yn+1(x)] = L [yn(x)] + L

 x

0
λ(x − ξ)


Lyn(ξ) + Nỹn(ξ) − f (ξ)


dξ


, n = 0, 1, 2, . . . . (2.3)

Therefore

L [yn+1(x)] = L [yn(x)] + L

λ(x) ∗


Lyn(x) + Nỹn(x) − f (x)


= L [yn(x)] + L


λ(x)


L

Lyn(x) + Nỹn(x) − f (x)


.

(2.4)

To find the optimal value of λ(x − ξ) we first take the variation with respect to yn(x). Thus

δ

δyn
L [yn+1(x)] =

δ

δyn
L [yn(x)] +

δ

δyn
L

λ(x)


L

Lyn(x) + Nỹn(x) − f (x)


, (2.5)

and hence upon applying the variation this simplifies to

L [δyn+1] = L [δyn] + δ L

λ

L [yn] . (2.6)

We assume that L is a linear differential operator with constant coefficients given by

L(y) ≡ any(n)
+ an−1y(n−1)

+ an−2y(n−2)
+ · · · + a2y′′

+ a1y′
+ a0y, (2.7)

where ai’s are constants. It is important to note that if the coefficients contain only non-constant terms of the form xk, then
the Laplace variational approach is still valid.

The Laplace transform of the first term of the operator L is given by

L

any(n)

= ansnL[y] − an
n

k=1

sk−1y(n−k)(0), (2.8)

so the variation with respect to y is

δL

any(n)

= ansnL[δy]. (2.9)

The other term in the operator L, namely an−1y(n−1), . . . , a1y′
+ a0y yields similar results. Hence using (2.9), Eq. (2.6)

reduces to

L [δyn+1] = L [δyn] + L

λ
  n

k=0

aksk


L [δyn] =


1 + L


λ
  n

k=0

aksk


L [δyn] . (2.10)

The extremum condition of yn+1 requires that δyn+1 = 0. This means that the right-hand side of Eq. (2.10) should be set to
zero. Hence, we have the stationary condition

L

λ


= −
1

n
k=0

aksk
. (2.11)

Taking the Laplace inverse of the last equation gives the optimal value ofλ. For this value ofλ, we have the following iteration
formulation:

L [yn+1(x)] = L [yn(x)] + L

 x

0
λ(x − ξ) [Lyn(ξ) + Nyn(ξ) − f (ξ)] dξ


, where n ≥ 0. (2.12)
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3. Examples

To illustrate this alternative novel approach, the Laplace variational scheme is applied on specific initial- and boundary-
value problems.

Example 1. Consider the boundary-value problem

y′′
+ y + x = 0,

y(0) = 0, y(1) = 0. (3.13)

The exact solution for this problem is y = csc(1) sin x−x. For this case, the Laplace variational iteration correction functional
will be constructed in the following manner:

L [yn+1(x)] = L [yn(x)] + L

 x

0
λ(x − ξ)


y′′

n(ξ) + yn(ξ) + ξ

dξ


, (3.14)

or equivalently, upon applying the properties of Laplace transform, we have

L [yn+1(x)] = L [yn(x)] + L

λ(x) ∗


y′′

n(x) + yn(x) + x


= L [yn(x)] + L

λ(x)


L

y′′

n(x) + yn(x) + x


= L [yn(x)] + L

λ(x)

 
(s2 + 1)L [yn(x)] − syn(0) − y′

n(0) +
1
s2


.

(3.15)

Taking the variation with respect to yn(x) of both sides of the latter equation, leads to

δ

δyn
L [yn+1(x)] =

δ

δyn
L [yn(x)] +

δ

δyn
L

λ(x)

 
(s2 + 1)L [yn(x)] − syn(0) − y′

n(0) +
1
s2


, (3.16)

and upon simplification we get

L [δyn+1] = L [δyn] + L

λ

(s2 + 1)L [δyn] = L [δyn]


1 + L


λ

(s2 + 1)


. (3.17)

The extremum condition of yn+1 requires that δyn+1 = 0. This means that the right-hand side of Eq. (3.17) should be set to
zero. Hence, we have 1 + L


λ

(s2 + 1) = 0, that is, L


λ


= −
1

s2+1
. Therefore

λ(x) = − sin x. (3.18)

Substituting Eq. (3.18) into (3.14) results in the following iterative scheme

L [yn+1(x)] = L [yn(x)] − L

 x

0
sin(x − ξ)


y′′

n(ξ) + yn(ξ) + ξ

dξ


= L [yn(x)] − L[sin x] L

y′′

n(x) + yn(x) + x

.

(3.19)

Let y0 = y(0) + y′(0)x = Ax. Then

L[y1] = L [y0] − L[sin x] L

y′′

0 + y0 + x


= L[Ax] − L[sin x] L [Ax + x]

=
A
s2

−
1

s2 + 1


A + 1
s2


.

(3.20)

Inverse Laplace transform yields

y1 = (A + 1) sin x − x. (3.21)

Using the boundary condition y(1) = 0 in (3.21), we get A = csc 1 − 1. Consequently y1 = csc(1) sin x − x, which is the
exact solution of our problem.

Example 2. Consider the following boundary-value problem that arises from the Euler–Lagrange equation upon solving the
Brachistochrone problem.

y′′
− yy′′

−
1
2

−
1
2
y′2

= 0,
y(0) = 0, y(1) = −0.5.

(3.22)
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The exact solution for this boundary-value problem, written in implicit form, is given by

F(x, y) = −


−y2 + 0.381510869y + 0.618489131 − x + 0.5938731505

− 0.8092445655 tan−1


y − 0.1907554345

−y2 + 0.381510869y + 0.618489131


= 0.

(3.23)

The Laplace variational iteration correction functional is constructed as follows:

L [yn+1(x)] = L [yn(x)] + L

 x

0
λ(x − ξ)


y′′

n(ξ) − ỹn(ξ)ỹ′′

n(ξ) −
1
2

−
1
2
ỹ′2
n (ξ)


dξ


; (3.24)

hence we have

L [yn+1(x)] = L [yn(x)] + L


λ(x) ∗


y′′

n(x) − ỹn(x)ỹ′′

n(x) −
1
2

−
1
2
ỹ′2
n (x)


= L [yn(x)] + L


λ(x)

 
s2L [yn(x)] − syn(0) − y′

n(0) − L

ỹn(x)ỹ′′

n(x)

−

1
2s

−
1
2

L

ỹ′2
n (x)


.

(3.25)

Taking the variation with respect to yn(x) results in

δ

δyn
L [yn+1(x)] =

δ

δyn
L [yn(x)] +

δ

δyn
L

λ(x)

 
s2L [yn(x)] − syn(0) − y′

n(0)

− L

ỹn(x)ỹ′′

n(x)

−

1
2s

−
1
2

L

ỹ′2
n (x)


. (3.26)

Making the above correction functional stationary we have

L [δyn+1] = L [δyn] + L

λ

s2L [δyn] = L [δyn]


1 + s2L


λ


= 0. (3.27)

This implies that 1 + s2L

λ


= 0, or L

λ


= −
1
s2
. Therefore

λ(x) = −x. (3.28)

Substituting Eq. (3.28) into (3.24) yields the iteration scheme:

L [yn+1(x)] = L [yn(x)] + L

 x

0
(ξ − x)


y′′

n(ξ) − yn(ξ)y′′

n(ξ) −
1
2

−
1
2
y′2
n (ξ)


dξ


, (3.29)

or

L [yn+1(x)] = L [yn(x)] + L[−x] L


y′′

n(x) − yn(x)y′′

n(x) −
1
2

−
1
2
y′2
n (x)


. (3.30)

Let y0 = y(0) + y′(0)x = Ax. Then

L[y1] = L[Ax] + L[−x] L


−

1
2

−
1
2
A2


=
A
s2

+
1
2s2


A2

+ 1
s


. (3.31)

Inverse Laplace gives the first iterate

y1 = Ax +
1
4
(A2

+ 1)x2. (3.32)

Matching y1 with the boundary conditions y(1) = −0.5, A = −1 and hence y1 = −x+ x2/2. Substituting (3.32) into (3.30)
yields

y2 = Ax +
1
4
(A2

+ 1)x2 +
1
6
(A3

+ A)x3 +
1
48

(A4
+ 2A2

+ 1)x4. (3.33)

If we stop at this second iterate, the boundary condition y(1) = −0.5 gives the value of A = −0.7460779052. Proceeding
similarly and using the scheme (3.29) the third iterate is found to be

y3 = 0.001156656714x8 − 0.009046734096x7 + 0.03457969268x6 − 0.1011538798x5

+ 0.1917675862x4 − 0.2225556398x3 + 0.4131913831x2 − 0.8079390650x. (3.34)
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Fig. 1. Numerical solutions of Example 2.

In Fig. 1 we plot the exact solution together with the numerical solution obtained by the Laplace variational method using
one, two and three iterates. Fig. 1 shows the improvement of the approximate solutions yn as n increases.

Example 3. Consider the nonlinear boundary-value problem

y′′(x) + 2

y′(x)

2
− 8y(x) = 4,

y(0) = 0, y(1) = 2.
(3.35)

The exact solution for this problem is y = x + x2. The Laplace variational iteration correction functional is expressed as:

L [yn+1(x)] = L [yn(x)] + L

 x

0
λ(x − ξ)


y′′

n(ξ) − 8yn(ξ) − 4 + 2ỹ′2
n (ξ)


dξ


. (3.36)

Therefore we have

L [yn+1(x)] = L [yn(x)] + L

λ(x) ∗


y′′

n(x) − 8yn(x) − 4 + 2ỹ′2
n (x)


= L [yn(x)] + L


λ(x)

 
(s2 − 8)L [yn(x)] − syn(0) − y′

n(0) −
4
s

+ 2L

ỹ′2
n


.

(3.37)

Taking the variation with respect to yn(x) and making the above correction functional stationary we obtain

L [δyn+1] = L [δyn]

1 + (s2 − 8)L


λ


= 0. (3.38)

This implies that L

λ


= −
1

s2−8
. Therefore

λ(x) = −
1

√
8
sinh(

√
8x). (3.39)

Substituting Eq. (3.39) into (3.36), we get the appropriate iterative scheme:

L [yn+1(x)] = L [yn(x)] −
1

√
8

L

 x

0
sinh

√
8(x − ξ)

 
y′′

n(ξ) − 8yn(ξ) − 4 + 2y′2
n (ξ)


dξ


, (3.40)

or

L [yn+1(x)] = L [yn(x)] −
1

√
8

L[sinh
√
8x] L


y′′

n(x) − 8yn(x) − 4 + 2y′2
n (x)


. (3.41)

Let y0 = y(0) + y′(0)x = Ax. Then

L[y1] = L[Ax] −
1

√
8

L[sinh
√
8x] L


−8Ax − 4 + 2A2

=
A
s2

−
1

s2 − 8


−

8A
s2

+
2A2

− 4
s


.

(3.42)
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Thus

y1 =
1
4
(A2

− 2) −
1
4
(A2

− 2) cosh(2
√
2x) +

1
4

√
2A sinh(2

√
2x). (3.43)

The higher iterates are obtained in a similar fashion. To find the value of A, we use the boundary condition y(1) = 2.

Example 4. Consider the following fifth order boundary-value problem

y(5)(x) = e−xy2(x),
y(0) = 1, y′(0) = 1, y′′(0) = 1, y(1) = e, y′(1) = e. (3.44)

The exact solution for (3.44) is y = ex. The Laplace variational iteration correction functional is given by:

L [yn+1(x)] = L [yn(x)] + L

 x

0
λ(x − ξ)


y(5)
n (ξ) − e−ξ ỹ2n(ξ)


dξ


. (3.45)

Thus

L [yn+1(x)] = L [yn(x)] + L

λ(x) ∗


y(5)
n (x) − e−xỹ2n(x)


= L [yn(x)] + L


λ(x)

 
s5L [yn(x)] − s4yn(0) − s3y′

n(0)

− s2y′′

n(0) − sy′′′

n (0) − y(4)
n (0) − L


e−xỹ2n(x)


.

(3.46)

Taking the variation with respect to yn(x) and making the above correction functional stationary we have L [δyn+1] =

L [δyn]

1 + s5L


λ


= 0, that is

L

λ


= −
1
s5

. (3.47)

Therefore

λ(x) = −
1
24

x4. (3.48)

Substituting Eq. (3.48) into (3.45) results in the following iterative scheme:

L [yn+1(x)] = L [yn(x)] −
1
24

L

 x

0
(x − ξ)4


y(5)
n (ξ) − e−ξy2n(ξ)


dξ


, (3.49)

or

L [yn+1(x)] = L [yn(x)] −
1
24

L[x4] L

y(5)
n (x) − e−xy2n(x)


. (3.50)

Letting

y0 = y(0) + y′(0)x +
1
2!

y′′(0)x2 +
1
3!

y′′′(0)x3 +
1
4!

y(4)(0)x4 = 1 + x +
1
2!

x2 + Ax3 + Bx4,

we get

L[y1] = L[1 + x +
1
2!

x2 + Ax3 + Bx4] −
1
24

L[x4] L


−e−x


1 + x +

1
2!

x2 + Ax3 + Bx4
2


=
1
s

+
1
s2

+
1
s3

+
6A
s4

+
24B
s5

+
1
s5


1

1 + s
+

2
(1 + s)2

+
4

(1 + s)3
+

12A + 6
(1 + s)4

+
48A + 48B + 6

(1 + s)5
+

120A + 240B
(1 + s)6

+
720(B + A2)

(1 + s)7
+

10080AB
(1 + s)8

+
40320B2

(1 + s)9


. (3.51)

Upon taking the inverse Laplace, the resulting expression for y1 is too long so we choose not to include it. Upon using the
two conditions y(1) = e and y′(1) = e, the values of A, B are found to be A = 0.1666728160 and B = 0.04166338259. The
following Taylor series expansion of y1 was obtained:

y1 = 1.00000 + 1.000006x +
1
2
x2 + 0.1666728160x3 + 0.04166338259x4 +

1
120

x5 + · · · , (3.52)

which matches highly accurately with Taylor’s expansion of the exact solution y = ex.
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Example 5. Consider the Riccati equation with the impulse function complimented with initial condition.

y′(x) = 2y(x) − y2(x) + 1 + δ(x − 2),
y(0) = 0. (3.53)

For x ≠ 2, the exact solution is given by y(x) = 1 +
√
2 tanh

√
2x − tanh−1(

√
2/2)


. The Laplace variational iteration

correction functional is expressed as

L [yn+1(x)] = L [yn(x)] + L

 x

0
λ(x − ξ)


y′

n(ξ) − 2yn(ξ) − 1 − δ(ξ − 2) + ỹ2n(ξ)

dξ


. (3.54)

Applying the Laplace transform, Eq. (3.54) becomes

L [yn+1(x)] = L [yn(x)] + L

λ(x) ∗


y′

n(x) − 2yn(x) − 1 − δ(x − 2) + ỹ2n(x)


= L [yn(x)] + L

λ(x)

 
(s − 2)L [yn(x)] − yn(0) −

1
s

− e−2s
+ L


ỹ2n(x)


.

(3.55)

Taking the variation with respect to yn(x) and making the above correction functional stationary, noting that δỹn = 0, we
have

L [δyn+1] = L [δyn]

1 + (s − 2)L


λ


= 0. (3.56)

This implies that L

λ


= −
1

(s−2) ; hence

λ(x) = −e2x. (3.57)

Substituting Eq. (3.57) into (3.54), we get the following iterative algorithm

L [yn+1(x)] = L [yn(x)] − L

 x

0
e2(x−ξ)


y′

n(ξ) − 2yn(ξ) − 1 − δ(ξ − 2) + y2n(ξ)

dξ


L [yn+1(x)] = L [yn(x)] − L[e2x] L

y′

n(x) − 2yn(x) − 1 − δ(x − 2) + y2n(x)

.

(3.58)

Let y0 = y(0) = 0. Then from the scheme (3.58), the first iterate is

L[y1] = L[0] − L[e2x] L [−1 − δ(x − 2)] =
1

s − 2


1
s

+ e−2s


, (3.59)

and upon taking the inverse Laplace gives y1 =
1
2 e

2x
−

1
2 +e2x−4 (1 − H(2 − x)), whereH is the Heaviside unit step function.

In a similar fashion we obtain the higher iterates, for instance the second iterate is

y2 = −
3
8

−
1
8
e4x +

1
2
e2x−8

+ e3x−8 sinh x − e3x−2 sinh(x − 2)H(x − 2) +
1
2
(1 + x)e2x

+
1
2
(1 − H(2 − x))(2x − 1)e2x−4

+


1
2
H(2 − x) − 1


e4x−8. (3.60)

The first few terms of Taylor’s series expansion of y2, for x ≠ 2, is

y2 = x + x2 +
1
3
x3 −

1
3
x4 − · · ·

which matches with the series expansion of the exact solution of the problem.

4. Conclusion

A Laplace variational iterationmethod is proposed for the solution of linear and nonlinear differential equations. The test
examples that are examined confirm that this approach is an effective alternative and in certain cases an enhancement of
the (VIM) strategy. A Laplace correction functional is introduced that enables us to express the integral in many instances
in the form of a convolution. Laplace transforms will make the variational problems easier to tackle, particularly in finding
the general Lagrange multiplier. When solving non-homogeneous equations involving discontinuous functions, Heaviside
functions and forcing functions, the Laplace variational technique is an appropriate tool.
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