1,822 research outputs found

    Program logics for homogeneous meta-programming.

    Get PDF
    A meta-program is a program that generates or manipulates another program; in homogeneous meta-programming, a program may generate new parts of, or manipulate, itself. Meta-programming has been used extensively since macros were introduced to Lisp, yet we have little idea how formally to reason about metaprograms. This paper provides the first program logics for homogeneous metaprogramming – using a variant of MiniMLe by Davies and Pfenning as underlying meta-programming language.We show the applicability of our approach by reasoning about example meta-programs from the literature. We also demonstrate that our logics are relatively complete in the sense of Cook, enable the inductive derivation of characteristic formulae, and exactly capture the observational properties induced by the operational semantics

    Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes

    Get PDF
    An improved method is given for the computation of the stress-energy tensor of a quantized scalar field using adiabatic regularization. The method works for fields with arbitrary mass and curvature coupling in Robertson-Walker spacetimes and is particularly useful for spacetimes with compact spatial sections. For massless fields it yields an analytic approximation for the stress-energy tensor that is similar in nature to those obtained previously for massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure

    A hominin first rib discovered at the Sterkfontein Caves, South Africa.

    Get PDF
    First ribs - the first or most superior ribs in the thorax - are rare in the hominin fossil record, and when found, have the potential to provide information regarding the upper thorax shape of extinct hominins. Here, we describe a partial first rib from Member 4 of the Sterkfontein Caves, South Africa. The rib shaft is broken away, so only the head and neck are preserved. The rib is small, falling closest to small-bodied Australopithecus first ribs (AL 288-1 and MH1). Given that it was recovered near the StW 318 femur excavation, which also represents a small individual, we suggest that the two may be associated. Three-dimensional geometric morphometric analyses were used to quantify the rib fragment morphology and compare it to extant hominoid and other fossil hominin ribs. While only the proximal end is preserved, our analyses show that South African Australopithecus share derived features of the proximal first rib more closely resembling A. afarensis and later hominins than great apes.NCS2016

    United classification of cosmic gamma-ray bursts and their counterparts

    Full text link
    United classification of gamma-ray bursts and their counterparts is established on the basis of measured characteristics: photon energy E and emission duration T. The founded interrelation between the mentioned characteristics of events consists in that, as the energy increases, the duration decreases (and vice versa). The given interrelation reflects the nature of the phenomenon and forms the E-T diagram, which represents a natural classification of all observed events in the energy range from 10E9 to 10E-6 eV and in the corresponding interval of durations from about 10E-2 up to 10E8 s. The proposed classification results in the consequences, which are principal for the theory and practical study of the phenomenon.Comment: Keywords Gamma rays: burst

    Group testing with Random Pools: Phase Transitions and Optimal Strategy

    Full text link
    The problem of Group Testing is to identify defective items out of a set of objects by means of pool queries of the form "Does the pool contain at least a defective?". The aim is of course to perform detection with the fewest possible queries, a problem which has relevant practical applications in different fields including molecular biology and computer science. Here we study GT in the probabilistic setting focusing on the regime of small defective probability and large number of objects, p→0p \to 0 and N→∞N \to \infty. We construct and analyze one-stage algorithms for which we establish the occurrence of a non-detection/detection phase transition resulting in a sharp threshold, Mˉ\bar M, for the number of tests. By optimizing the pool design we construct algorithms whose detection threshold follows the optimal scaling Mˉ∝Np∣log⁡p∣\bar M\propto Np|\log p|. Then we consider two-stages algorithms and analyze their performance for different choices of the first stage pools. In particular, via a proper random choice of the pools, we construct algorithms which attain the optimal value (previously determined in Ref. [16]) for the mean number of tests required for complete detection. We finally discuss the optimal pool design in the case of finite pp

    Spin diffusion at finite electric and magnetic fields

    Full text link
    Spin transport properties at finite electric and magnetic fields are studied by using the generalized semiclassical Boltzmann equation. It is found that the spin diffusion equation for non-equilibrium spin density and spin currents involves a number of length scales that explicitly depend on the electric and magnetic fields. The set of macroscopic equations can be used to address a broad range of the spin transport problems in magnetic multilayers as well as in semiconductor heterostructure. A specific example of spin injection into semiconductors at arbitrary electric and magnetic fields is illustrated

    Mapping the unique and shared functions of oncogenic KRAS and RIT1 with proteome and transcriptome profiling

    Get PDF
    Aberrant activation of RAS oncogenes is prevalent in lung adenocarcinoma, with somatic mutation of KRAS occurring in ∌30% of tumors. Recently, we identified somatic mutation of the RAS-family GTPase RIT1 in lung adenocarcinoma, but relatively little is known about the biological pathways regulated by RIT1 and how these relate to the oncogenic KRAS network. Here we present quantitative proteomic and transcriptomic profiles from KRAS-mutant and RIT1-mutant isogenic lung epithelial cells and globally characterize the signaling networks regulated by each oncogene. We find that both mutant KRAS and mutant RIT1 promote S6 kinase, AKT, and RAF/MEK signaling, and promote epithelial-to-mesenchymal transition and immune evasion via HLA protein loss. However, KRAS and RIT1 diverge in regulation of phosphorylation sites on EGFR, USO1, and AHNAK proteins. The majority of the proteome changes are related to altered transcriptional regulation, but a small subset of proteins are differentially regulated by both oncoproteins at the post-transcriptional level, including intermediate filament proteins, metallothioneins, and MHC Class I proteins. These data provide the first global, unbiased characterization of oncogenic RIT1 network and identify the shared and divergent functions of oncogenic RIT1 and KRAS GTPases in lung cancer

    Osteogenic tumour in Australopithecus sediba: Earliest hominin evidence for neoplastic disease

    Get PDF
    We describe the earliest evidence for neoplastic disease in the hominin lineage. This is reported from the type specimen of the extinct hominin Australopithecus sediba from Malapa, South Africa, dated to 1.98 million years ago. The affected individual was male and developmentally equivalent to a human child of 12 to 13 years of age. A penetrating lytic lesion affected the sixth thoracic vertebra. The lesion was macroscopically evaluated and internally imaged through phase-contrast X-ray synchrotron microtomography. A comprehensive differential diagnosis was undertaken based on gross- and micro-morphology of the lesion, leading to a probable diagnosis of osteoid osteoma. These neoplasms are solitary, benign, osteoid and bone-forming tumours, formed from well-vascularised connective tissue within which there is active production of osteoid and woven bone. Tumours of any kind are rare in archaeological populations, and are all but unknown in the hominin record, highlighting the importance of this discovery. The presence of this disease at Malapa predates the earliest evidence of malignant neoplasia in the hominin fossil record by perhaps 200 000 years.NCS201

    Two-subband electron transport in nonideal quantum wells

    Full text link
    Electron transport in nonideal quantum wells (QW) with large-scale variations of energy levels is studied when two subbands are occupied. Although the mean fluctuations of these two levels are screened by the in-plane redistribution of electrons, the energies of both levels remain nonuniform over the plane. The effect of random inhomogeneities on the classical transport is studied within the framework of a local response approach for weak disorder. Both short-range and small-angle scattering mechanisms are considered. Magnetotransport characteristics and the modulation of the effective conductivity by transverse voltage are evaluated for different kinds of confinement potentials (hard wall QW, parabolic QW, and stepped QW).Comment: 10 pages, 6 figure

    A chemical probe unravels the reactive proteome of health-associated catechols

    Get PDF
    Catechol-containing natural products are common constituents of foods, drinks, and drugs. Natural products carrying this motif are often associated with beneficial biological effects such as anticancer activity and neuroprotection. However, the molecular mode of action behind these properties is poorly understood. Here, we apply a mass spectrometry-based competitive chemical proteomics approach to elucidate the target scope of catechol-containing bioactive molecules from diverse foods and drugs. Inspired by the protein reactivity of catecholamine neurotransmitters, we designed and synthesised a broadly reactive minimalist catechol chemical probe based on dopamine. Initial labelling experiments in live human cells demonstrated broad protein binding by the probe, which was largely outcompeted by its parent compound dopamine. Next, we investigated the competition profile of a selection of biologically relevant catechol-containing substances. With this approach, we characterised the protein reactivity and the target scope of dopamine and ten biologically relevant catechols. Strikingly, proteins associated with the endoplasmic reticulum (ER) were among the main targets. ER stress assays in the presence of reactive catechols revealed an activation of the unfolded protein response (UPR). The UPR is highly relevant in oncology and cellular resilience, which may provide an explanation of the health-promoting effects attributed to many catechol-containing natural products.Molecular Physiolog
    • 

    corecore