35,150 research outputs found

    An Integer Programming Formulation of the Minimum Common String Partition problem

    Full text link
    We consider the problem of finding a minimum common partition of two strings (MCSP). The problem has its application in genome comparison. MCSP problem is proved to be NP-hard. In this paper, we develop an Integer Programming (IP) formulation for the problem and implement it. The experimental results are compared with the previous state-of-the-art algorithms and are found to be promising.Comment: arXiv admin note: text overlap with arXiv:1401.453

    Solution of Linear Programming Problems using a Neural Network with Non-Linear Feedback

    Get PDF
    This paper presents a recurrent neural circuit for solving linear programming problems. The objective is to minimize a linear cost function subject to linear constraints. The proposed circuit employs non-linear feedback, in the form of unipolar comparators, to introduce transcendental terms in the energy function ensuring fast convergence to the solution. The proof of validity of the energy function is also provided. The hardware complexity of the proposed circuit compares favorably with other proposed circuits for the same task. PSPICE simulation results are presented for a chosen optimization problem and are found to agree with the algebraic solution. Hardware test results for a 2–variable problem further serve to strengthen the proposed theory

    Effects of supplementary feeds on growth and survival of freshwater giant prawn (Macrobrachium resenbergii [i.e. rosenbergii] deMan)

    Get PDF
    Highest growth of prawn was obtained with Feed B (743 kg/ha) with highest survival rate (60.88%) followed by Feed A where production and survival rate was 659 kg/ha and 53.50%, respectively. Feed A contained 30% dry ground cow viscera, 40% oil cake, 20% rice-bran and 10% heat bran. Feed conversion ratios were found to be 7.60:1 for Feed A and 6.46:1 for Feed B, which indicated that Feed B was more efficiently utilized by the prawn than Feed A. Statistical analysis revealed that the differences in production of prawns among the treatments were highly significant (P< 0.01)

    Location of Partial Discharges within a Transformer Winding Using Principal Component Analysis

    No full text
    Partial discharge (PD) may occur in a transformer winding due to ageing processes or defects introduced during manufacture. A partial discharge is defined as a localised electric discharge that only partially bridges the dielectric insulator between conductors when the electric field exceeds a critical value. The presence of PD does not necessarily indicate imminent failure of the transformer but it is a serious degradation and ageing mechanism which can be considered as a precursor of transformer failure. PD might occur anywhere along the transformer winding and the discharge signal can propagate along the winding to the bushing and neutral to earth connections. As far as maintenance and replacement processes are concerned, it is important to identify the location of PD activity so any repair or replace decision is assured to be cost effective. Therefore, identification of a PD source as well as its location along the transformer winding is of great interest to both manufacturers and system operators. The wavelet transform is a mathematical function that can be used to decompose a PD signal into detail levels and an approximation. Wavelet filtering is often used to improve signal to noise ratio (SNR) of measured signals, but in this case it is used to identify the distribution of signal energies in both the time and frequency domains. This method produces a feature vector for each captured discharge signal. The use of principle component analysis (PCA) can compress this data into three dimensions, to aid visualisation. Data captured by sensors over hundreds of cycles of applied voltage can be analysed using this approach. An experiment (Figure 1) has been developed that can be used to create PD data in order to investigate the feasibility of using PCA analysis to identify PD source location
    corecore