27,781 research outputs found

    Unconstrained video monitoring of breathing behavior and application to diagnosis of sleep apnea

    Get PDF
    This paper presents a new real-time automated infrared video monitoring technique for detection of breathing anomalies, and its application in the diagnosis of obstructive sleep apnea. We introduce a novel motion model to detect subtle, cyclical breathing signals from video, a new 3-D unsupervised self-adaptive breathing template to learn individuals' normal breathing patterns online, and a robust action classification method to recognize abnormal breathing activities and limb movements. This technique avoids imposing positional constraints on the patient, allowing patients to sleep on their back or side, with or without facing the camera, fully or partially occluded by the bed clothes. Moreover, shallow and abdominal breathing patterns do not adversely affect the performance of the method, and it is insensitive to environmental settings such as infrared lighting levels and camera view angles. The experimental results show that the technique achieves high accuracy (94% for the clinical data) in recognizing apnea episodes and body movements and is robust to various occlusion levels, body poses, body movements (i.e., minor head movement, limb movement, body rotation, and slight torso movement), and breathing behavior (e.g., shallow versus heavy breathing, mouth breathing, chest breathing, and abdominal breathing). © 2013 IEEE

    Kinetic Theory of Collisionless Self-Gravitating Gases: II. Relativistic Corrections in Galactic Dynamics

    Get PDF
    In this paper we study the kinetic theory of many-particle astrophysical systems imposing axial symmetry and extending our previous analysis in Phys. Rev. D 83, 123007 (2011). Starting from a Newtonian model describing a collisionless self-gravitating gas, we develop a framework to include systematically the first general relativistic corrections to the matter distribution and gravitational potentials for general stationary systems. Then, we use our method to obtain particular solutions for the case of the Morgan & Morgan disks. The models obtained are fully analytical and correspond to the post-Newtonian generalizations of classical ones. We explore some properties of the models in order to estimate the importance of post-Newtonian corrections and we find that, contrary to the expectations, the main modifications appear far from the galaxy cores. As a by-product of this investigation we derive the corrected version of the tensor virial theorem. For stationary systems we recover the same result as in the Newtonian theory. However, for time dependent backgrounds we find that there is an extra piece that contributes to the variation of the inertia tensor.Comment: 30 pages, 8 figures. v2: Minor corrections and references added. Conclusions unchanged. v3: Version published in PR

    Optical frequency combs from high-order sideband generation

    Get PDF
    We report on the generation of frequency combs from the recently-discovered phenomenon of high-order sideband generation (HSG). A near-band gap continuous-wave (cw) laser with frequency fNIRf_\text{NIR} was transmitted through an epitaxial layer containing GaAs/AlGaAs quantum wells that were driven by quasi-cw in-plane electric fields FTHzF_\text{THz} between 4 and 50 kV/cm oscillating at frequencies fTHzf_\text{THz} between 240 and 640 GHz. Frequency combs with teeth at fsideband=fNIR+nfTHzf_\text{sideband}=f_\text{NIR}+nf_\text{THz} (nn even) were produced, with maximum reported n>120n>120, corresponding to a maximum comb span >80>80 THz. Comb spectra with the identical product fTHz×FTHzf_\text{THz}\times F_\text{THz} were found to have similar spans and shapes in most cases, as expected from the picture of HSG as a scattering-limited electron-hole recollision phenomenon. The HSG combs were used to measure the frequency and linewidth of our THz source as a demonstration of potential applications

    The Stellar and Gas Kinematics of Several Irregular Galaxies

    Get PDF
    We present long-slit spectra of three irregular galaxies from which we determinethe stellar kinematics in two of the galaxies (NGC 1156 and NGC 4449) and ionized-gas kinematics in all three (including NGC 2366). We compare this to the optical morphology and to the HI kinematics of the galaxies. In the ionized gas, we see a linear velocity gradient in all three galaxies. In NGC 1156 we also detect a weak linear velocity gradient in the stars of (5+/-1/sin i) km/s/kpc to a radius of 1.6 kpc. The stars and gas are rotating about the same axis, but this is different from the major axis of the stellar bar which dominates the optical light of the galaxy. In NGC 4449 we do not detect organized rotation of the stars and place an upper limit of (3/sin i) km/s/kpc to a radius of 1.2 kpc. For NGC 4449, which has signs of a past interaction with another galaxy, we develop a model to fit the observed kinematics of the stars and gas. In this model the stellar component is in a rotating disk seen nearly face-on while the gas is in a tilted disk with orbits whose planes precess in the gravitational potential. This model reproduces the apparent counter-rotation of the inner gas of the galaxy. The peculiar orbits of the gas are presumed due to acquisition of gas in the past interaction.Comment: To be published in ApJ, November 20, 200

    Attracted Diffusion-Limited Aggregation

    Full text link
    In this paper, we present results of extensive Monte Carlo simulations of diffusion-limited aggregation (DLA) with a seed placed on an attractive plane as a simple model in connection with the electrical double layers. We compute the fractal dimension of the aggregated patterns as a function of the attraction strength \alpha. For the patterns grown in both two and three dimensions, the fractal dimension shows a significant dependence on the attraction strength for small values of \alpha, and approaches to that of the ordinary two-dimensional (2D) DLA in the limit of large \alpha. For non-attracting case with \alpha=1, our results in three dimensions reproduce the patterns of 3D ordinary DLA, while in two dimensions our model leads to formation of a compact cluster with dimension two. For intermediate \alpha, the 3D clusters have quasi-2D structure with a fractal dimension very close to that of the ordinary 2D-DLA. This allows one to control morphology of a growing cluster by tuning a single external parameter \alpha.Comment: 6 pages, 6 figures, to appear in Phys. Rev. E (2012
    • 

    corecore