108 research outputs found

    Algumas consideraçÔes sobre a profissão de revisor oficial de contas (TOC): do direito, passando pela formação, legística e linguística, até à supervisão

    Get PDF
    Nos Ășltimos tempos, tem-se questionado as qualidades tĂ©cnicas do Revisor Oficial de Contas (ROC), principalmente apĂłs os descalabros financeiros ocorridos em grandes organizaçÔes. Esta controvĂ©rsia pĂ”e em causa nĂŁo sĂł o prestĂ­gio, como a prĂłpria estrutura e existĂȘncia da profissĂŁo. Assim, revela-se de crucial pertinĂȘncia e atualidade abordarmos a sua gĂ©nese e algumas das suas tendĂȘncias. Com este propĂłsito, fazemos um enquadramento legal e cronolĂłgico, destacando a presença e influĂȘncia do Direito na formação acadĂ©mica e profissional dos ROC, e abordamos a supervisĂŁo deste ofĂ­cio.ABSTRACT - Lately, auditor’s technical qualities have been questioned, chiefly after financial crises in big organizations. This controversy calls into question not only the prestige but also the structure and existence of such a profession. So, it is of crucial relevance and a current issue to approach is the genesis and latest trends. For this purpose, we’ve made a legal and chronological framework focusing on the presence and influence of the Law in academic and professional auditor’s training whereas we are dealing with that career control.info:eu-repo/semantics/publishedVersio

    Degradation of 2,4,6-trichlorophenol by a specialized organism and by indigenous soil microflora: bioaugmentation and self-remediability for soil restoration

    Get PDF
    A selected mixed culture and a strain of Alcaligenes eutrophus TCP were able to totally degrade 2,4,6-TCP with stoichiometric release of Cl-. In cultures of Alc. eutrophus TCP, a dioxygenated dichlorinated metabolite was detected after 48 h of incubation. Experiments conducted with soil microcosms gave evidence that: the degradative process had a biotic nature and was accompanied by microbial growth; the soil used presented an intrinsic degradative capacity versus 2,4,6-TCP; the specialized organism used as inoculum was effective in degrading 2,4,6-TCP in a short time. These results could be utilized for the adoption of appropriate remediation techniques for contaminated soil

    Autogenous regulation of Escherichia coli polynucleotide phosphorylase expression revisited

    Get PDF
    The Escherichia coli polynucleotide phosphorylase (PNPase, encoded by pnp), a phosphorolytic exoribonuclease, post-transcriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double strand cleavage about in the middle of a long stem-loop in the 5'-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III processed pnp mRNA thus exposing the transcript to degradative pathways. More recently this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage thus destroying the double stranded structure at the 5'-end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5' double stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double stranded structure at its 5'-end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5'-fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript

    Role of 5-HT1A and 5-HT2C receptors of the dorsal periaqueductal gray in the anxiety- and panic-modulating effects of antidepressants in rats

    Get PDF
    Antidepressant drugs are first-line treatment for panic disorder. Facilitation of 5-HT1A receptor-mediated neurotransmission in the dorsal periaqueductal gray (dPAG), a key panic-associated area, has been implicated in the panicolytic effect of the selective serotonin reuptake inhibitor fluoxetine. However, it is still unknown whether this mechanism accounts for the antipanic effect of other classes of antidepressants drugs (ADs) and whether the 5-HT interaction with 5-HT2C receptors in this midbrain area (which increases anxiety) is implicated in the anxiogenic effect caused by short-term treatment with ADs. The results showed that previous injection of the 5-HT1A receptor antagonist WAY-100635 in the dPAG blocked the panicolytic-like effect caused by chronic systemic administration of the tricyclic AD imipramine in male Wistar rats tested in the elevated T-maze. Neither chronic treatment with imipramine nor fluoxetine changed the expression of 5-HT1A receptors in the dPAG. Treatment with these ADs also failed to significantly change ERK1/2 (extracellular-signal regulated kinase) phosphorylation level in this midbrain area. Blockade of 5-HT2C receptors in the dPAG with the 5-HT2C receptor antagonist SB-242084 did not change the anxiogenic effect caused by a single acute injection of fluoxetine or imipramine in the Vogel conflict test. These results reinforce the view that the facilitation of 5-HT1A receptor mediated neurotransmission in the dPAG is a common mechanism involved in the panicolytic effect caused by chronic administration of ADs. On the other hand, the anxiogenic effect observed after short-term treatment with these drugs does not depend on 5-HT2C receptors located in the dPAG.Peer reviewe

    Human haematopoietic stem cells express Oct4 pseudogenes and lack the ability to initiate Oct4 promoter-driven gene expression

    Get PDF
    The transcription factor Oct4 is well defined as a key regulator of embryonic stem (ES) cell pluripotency. In recent years, the role of Oct4 has purportedly extended to the self renewal and maintenance of multipotency in adult stem cell (ASC) populations. This profile has arisen mainly from reports utilising reverse transcription-polymerase chain reaction (RT-PCR) based methodologies and has since come under scrutiny following the discovery that many developmental genes have multiple pseudogenes associated with them. Six known pseudogenes exist for Oct4, all of which exhibit very high sequence homology (three >97%), and for this reason the generation of artefacts may have contributed to false identification of Oct4 in somatic cell populations. While ASC lack a molecular blueprint of transcription factors proposed to be involved with 'stemness' as described for ES cells, it is not unreasonable to assume that similar gene patterns may exist. The focus of this work was to corroborate reports that Oct4 is involved in the regulation of ASC self-renewal and differentiation, using a combination of methodologies to rule out pseudogene interference. Haematopoietic stem cells (HSC) derived from human umbilical cord blood (UCB) and various differentiated cell lines underwent RT-PCR, product sequencing and transfection studies using an Oct4 promoter-driven reporter. In summary, only the positive control expressed Oct4, with all other cell types expressing a variety of Oct4 pseudogenes. Somatic cells were incapable of utilising an exogenous Oct4 promoter construct, leading to the conclusion that Oct4 does not appear involved in the multipotency of human HSC from UCB

    In Vitro Identification and Characterization of CD133pos Cancer Stem-Like Cells in Anaplastic Thyroid Carcinoma Cell Lines

    Get PDF
    Background: Recent publications suggest that neoplastic initiation and growth are dependent on a small subset of cells, termed cancer stem cells (CSCs). Anaplastic Thyroid Carcinoma (ATC) is a very aggressive solid tumor with poor prognosis, characterized by high dedifferentiation. The existence of CSCs might account for the heterogeneity of ATC lesions. CD133 has been identified as a stem cell marker for normal and cancerous tissues, although its biological function remains unknown. Methodology/Principal Findings: ATC cell lines ARO, KAT-4, KAT-18 and FRO were analyzed for CD133 expression. Flow cytometry showed CD133pos cells only in ARO and KAT-4 (6469% and 57612%, respectively). These data were confirmed by qRT-PCR and immunocytochemistry. ARO and KAT-4 were also positive for fetal marker oncofetal fibronectin and negative for thyrocyte-specific differentiating markers thyroglobulin, thyroperoxidase and sodium/iodide symporter. Sorted ARO/ CD133pos cells exhibited higher proliferation, self-renewal, colony-forming ability in comparison with ARO/CD133neg. Furthermore, ARO/CD133pos showed levels of thyroid transcription factor TTF-1 similar to the fetal thyroid cell line TAD-2, while the expression in ARO/CD133neg was negligible. The expression of the stem cell marker OCT-4 detected by RT-PCR and flow cytometry was markedly higher in ARO/CD133pos in comparison to ARO/CD133neg cells. The stem cell markers c- KIT and THY-1 were negative. Sensitivity to chemotherapy agents was investigated, showing remarkable resistance to chemotherapy-induced apoptosis in ARO/CD133pos when compared with ARO/CD133neg cells. Conclusions/Significance: We describe CD133pos cells in ATC cell lines. ARO/CD133pos cells exhibit stem cell-like features - such as high proliferation, self-renewal ability, expression of OCT-4 - and are characterized by higher resistance to chemotherapy. The simultaneous positivity for thyroid specific factor TTF-1 and onfFN suggest they might represent putative thyroid cancer stem-like cells. Our in vitro findings might provide new insights for novel therapeutic approaches
    • 

    corecore